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Preface

The Workshop on Logic, Language, Information and Computation (WoLLIC)
has met every year since 1994 with the aim of fostering interdisciplinary research
in pure and applied logic. The idea is to have a forum which is large enough in
the number of possible interactions between logic and the sciences related to
information and computation, and yet is small enough to allow for concrete and
useful interaction among participants.

This volume contains the texts of the 21 contributed papers selected for
presentation at WoLLIC 2008. Between them they give a representative sample
of some of the most active areas of research on the frontiers between computation,
logic and linguistics. The authors range from well-established leaders in the field
to researchers still working for their PhDs or masters degrees.

The volume also includes abstracts of talks by some of the seven invited
speakers. Full texts will appear in a peer-reviewed issue of the Journal of Com-
puter and Systems Sciences.

April 2008 Wilfrid Hodges
Ruy de Queiroz
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Inter-deriving Semantic Artifacts

for Object-Oriented Programming

(Extended Abstract)

Olivier Danvy and Jacob Johannsen

Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

{danvy,cnn}@daimi.au.dk
http://www.daimi.au.dk/~{danvy,cnn}

Abstract. We present a new abstract machine for Abadi and Cardelli’s
untyped calculus of objects. What is special about this semantic artifact
(i.e., man-made construct) is that is mechanically corresponds to both
the reduction semantics (i.e., small-step operational semantics) and the
natural semantics (i.e., big-step operational semantics) specified in Abadi
and Cardelli’s monograph. This abstract machine therefore embodies
the soundness of Abadi and Cardelli’s reduction semantics and natural
semantics relative to each other.

To move closer to actual implementations, which use environ-
ments rather than actual substitutions, we then represent object methods
as closures and in the same inter-derivational spirit, we present three
new semantic artifacts: a reduction semantics for a version of Abadi
and Cardelli’s untyped calculus of objects with explicit substitutions, an
environment-based abstract machine, and a natural semantics (i.e., an
interpreter) with environments. These three new semantic artifacts me-
chanically correspond to each other, and furthermore, they are coherent
with the previous ones since as we show, the two abstract machines are
bisimilar. Overall, though, the significance of these artifacts lies in them
not having been designed from scratch and then proved correct: instead,
they were mechanically inter-derived.

1 Introduction

Our goal here is to apply Danvy et al.’s ‘syntactic correspondence’ and ‘func-
tional correspondence’ [3, 8, 12, 21, 37, 38, 39], which were developed for the λ-
calculus with effects, to Abadi and Cardelli’s untyped calculus of objects [1,
Chapter 6].

1.1 Background and First Contribution

The syntactic correspondence between reduction semantics and abstract machines:
This correspondence mechanically links a reduction semantics (i.e., a small-
step operational semantics with an explicit representation of reduction con-
texts [27,28]) to an abstract machine. In such a reduction semantics, evaluation

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 O. Danvy and J. Johannsen

is implemented by iterated reduction, and the corresponding reduction sequence
can be depicted as follows:

◦
decompose

���
��

��
��

��
reduction step �� ◦

decompose

���
��

��
��

��
reduction step �� ◦

decompose

���
��

��
��

��

◦
contract

�� ◦

plug
����������� ◦

contract
�� ◦

plug
����������� ◦

contract
��

At each step, a non-value term is decomposed into a reduction context and a
potential redex. If the potential redex is an actual one (i.e., if it is not stuck),
it is contracted. The contractum is then plugged into the context, yielding the
next term in the reduction sequence.

At each step, the function plug therefore constructs an intermediate term.
In the course of evaluation, this term is then immediately decomposed by the
subsequent call to decompose. The composition of plug and decompose can thus
be replaced by a more efficient function, refocus, that directly goes from redex
site to redex site in the reduction sequence:

◦
decompose

���
��

��
��

��
◦

decompose

���
��

��
��

��
◦

decompose

���
��

��
��

��

������ ◦
contract

�� ◦

plug
�����������

refocus
���������� ◦

contract
�� ◦

plug
�����������

refocus
���������� ◦

contract
��

As shown by Danvy and Nielsen [25], refocus can take the form of a state-
transition function. Therefore, together with contract, the result is an abstract
machine. And what is remarkable here is that the abstract machines obtained
by refocusing are not unnatural ones.

In fact, this syntactic correspondence between reduction semantics and ab-
stract machines has made it possible to obtain a variety of abstract machines
for the λ-calculus, be it pure or with effects. Some of these machines were in-
dependently known and some others are new [10,11]. Symmetrically, it also has
made it possible to exhibit the calculi and the reduction strategies (in the form
of reduction semantics) corresponding to pre-existing abstract machines.

The functional correspondence between natural semantics and abstract machines:
This correspondence mechanically links a natural semantics (i.e., a big-step op-
erational semantics, as implemented by an interpreter [32, 40]) to an abstract
machine. It is based on the framework initiated by Reynolds in his seminal ar-
ticle “Definitional Interpreters for Higher-Order Programming Languages” [41].
In a nutshell, successively transforming an interpreter using closure conversion,
transformation into continuation-passing style (CPS), and defunctionalization
yields an abstract machine [4]. And what is remarkable here is that the ab-
stract machines obtained by CPS transformation and defunctionalization are
not unnnatural ones.
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In fact, this functional correspondence between natural semantics and ab-
stract machines has made it possible to obtain a variety of abstract machines
for the λ-calculus, be it pure or with effects. Some of these machines were in-
dependently known and some others are new [5, 6, 9]. Symmetrically, it also has
made it possible to exhibit the interpreter (in the form of a natural semantics)
corresponding to pre-existing abstract machines.

Our starting point here: Together, the syntactic and the functional correspon-
dences make it possible to connect three semantic artifacts (i.e., man-made con-
structs) soundly: reduction semantics, abstract machines, and natural semantics.
Better: the correspondence make it possible to inter-derive these semantics (or
more precisely, their representation as functional programs), mechanically. This
inter-derivation contrasts with defining several semantics, which requires work,
and proving their soundness relative to each other, which requires more work. As
Rod Burstall soberly put it once, “theory should be call by need.” Our goal here
is to apply these two correspondences to Abadi and Cardelli’s untyped calculus
of objects.

Abadi and Cardelli’s untyped calculus of objects: Abadi and Cardelli’s mono-
graph “A Theory of Objects” is a landmark. Nowadays it provides standard
course material about object-oriented languages and programming. Of interest
to us here is its Chapter 6 where an untyped calculus of objects, the ς-calculus,
is developed in the same spirit as its predecessor, the λ-calculus [7, 14], which
was initially developed as an untyped calculus of functions. The ς-calculus is
specified with a reduction semantics, for a given reduction order, and with a
natural semantics, for a given evaluation order. A soundness theorem (Proposi-
tion 6.2-3, page 64) links the two semantics. Operational reduction is also shown
to be complete with respect to many-step reduction with a completeness theorem
(Theorem 6.2-4, page 65). Soundness matters because it shows that the inter-
preter implementing the natural semantics is faithful to the reduction semantics
and vice versa. Completeness matters because it shows that the reductions may
be meaningfully re-ordered, thus enabling practical optimizations such as con-
stant propagation and more generally partial evaluation [15, 31].

First contribution: Using the syntactic correspondence, we exhibit an abstract
machine that embodies the reduction semantics of the ς-calculus and its re-
duction strategy. Using the functional correspondence, we exhibit an abstract
machine that embodies the natural semantics of the ς-calculus and its evalua-
tion strategy. The two abstract machines are identical. This abstract machine,
which is new, therefore mediates between the reduction semantics and the nat-
ural semantics, and practically confirms the soundness theorem:

reduction
semantics

for the
ς-calculus

syntactic
correspondence

��

abstract
machine
for the

ς-calculus

natural
semantics

for the
ς-calculus

functional
correspondence

��
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1.2 Further Background and Contributions

Substitutions vs. environments: Practical implementations of the λ-calculus do
not use actual substitutions. Instead, they use ‘environments,’ which are map-
pings representing delayed substitutions, and represent functions with ‘closures,’
which are pairs of terms and environments [34]. In such practical implementa-
tions, an identifier is not a thing to be substituted by a term, but a thing to
be looked up in the current environment. At the turn of the 1990’s [17], Curien
proposed a ‘calculus of closures,’ the λρ-calculus, to account for this implemen-
tation strategy of the λ-calculus, and explicit substitutions were born [2,18,43].
Both the syntactic and the functional correspondences have been applied to cal-
culi of explicit substitutions, environment-based abstract machines, and natural
semantics using environments [4, 10].

Abadi and Cardelli’s untyped calculus of objects with methods as closures: We
present a version of the ς-calculus with explicit substitutions, the ςρ-calculus.
Instead of performing substitution when invoking a method, we represent meth-
ods as closures. We state three semantic artifacts for the ςρ-calculus: a natural
semantics, an abstract machine, and a reduction semantics.

Contributions: Using the syntactic correspondence, we exhibit an environment-
based abstract machine that embodies the reduction semantics of the ςρ-calculus
and its reduction strategy. Using the functional correspondence, we exhibit an
environment-based abstract machine that embodies the natural semantics of the
ςρ-calculus and its evaluation strategy. Again, the two abstract machines are
identical, which establishes the soundness of the reduction semantics and of the
natural semantics for the ςρ-calculus relative to each other. We then show that
this environment-based abstract machine and the abstract machine with actual
substitutions from Section 1.1 are bisimilar, which establishes the coherence of
the ςρ-calculus with respect to the ς-calculus:

reduction
semantics

for the
ς-calculus

syntactic
correspondence

��
abstract
machine
for the

ς-calculus

bisimilarity

���
�
�
�
�
�
�

natural
semantics

for the
ς-calculus

functional
correspondence

��

reduction
semantics

for the
ςρ-calculus

syntactic
correspondence

��

abstract
machine
for the

ςρ-calculus

���
�
�
�
�
�
�

natural
semantics

for the
ςρ-calculus

functional
correspondence

��

As for having a completeness theorem for the ςρ-calculus, Melliès’s proof applies
mutatis mutandis [1, Theorem 6.2-4, page 65].
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1.3 Overview

In Section 2, we remind the reader of the ς-calculus (Section 2.1) and we present
its reduction semantics; through the syntactic correspondence, we obtain the cor-
responding abstract machine (Section 2.2). Through the functional correspon-
dence, we then present the natural semantics corresponding to this abstract ma-
chine (Section 2.3). This natural semantics coincides with Abadi and Cardelli’s.
In Section 3, we introduce the ςρ-calculus, which is a version of the ς-calculus
with explicit substitutions where methods are represented with closures, and
we specify it with a natural semantics that uses environments (Section 3.1);
through the functional correspondence, we obtain the corresponding abstract
machine (Section 3.2). Through the syntactic correspondence, we then present
the reduction semantics corresponding to this abstract machine (Section 3.3). In
Section 4.1, we present a mapping from ςρ-closures to ς-terms that performs the
actual substitutions that were delayed by the given environments in the given
terms. In Section 4.2, using this mapping, we show that the two abstract ma-
chines are bisimilar, which establishes a coherence between the three semantic
artifacts for the ς-calculus and the three semantic artifacts for the ςρ-calculus.
We then review related work in Section 5 and conclude in Section 6.

Prerequisites: We assume the reader to be mildly familiar with Sections 6.1
and 6.2 of Abadi and Cardelli’s monograph [1] and with the concepts of re-
duction semantics (BNF of terms and of reduction contexts, notion of redex,
one-step reduction, evaluation as iterated reduction), of abstract machines (ini-
tial, intermediate, and final states, and state-transition functions), of natural
semantics (interpreters as evaluation functions), and of bisimulation. As for the
syntactic and functional correspondences, the unfamiliar reader can just flip
through Danvy’s invited paper at WRS’04 [20] or through Danvy and Millikin’s
recent note about small-step and big-step abstract machines [23] for what is not
self-explanatory.

2 Abadi and Cardelli’s Untyped Calculus of Objects: The
ς-Calculus

We consider in turn a reduction semantics for the ς-calculus (Section 2.1), the
corresponding abstract machine (Section 2.2), and the corresponding natural
semantics (Section 2.3).

2.1 A Reduction Semantics

BNF of terms and of values: An object is a collection of named attributes.
Names are labels and all labels are distinct within each object. All attributes are
methods with a bound variable representing self (and to be bound to the host
object at invocation time) and a body whose execution yields a result.
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(Term) t ::= x | [l = ς(x)t, . . . , l = ς(x)t] | t.l | t.l⇐ ς(x)t
(Value) v ::= [l = ς(x)t, . . . , l = ς(x)t]

This grammar for terms defines the same language as in Abadi and Cardelli’s
book but it uses a more uniform naming convention.

NB: Occasionally, we index a value by its number of methods, as in vn =
[li = ς(xi)ti

i∈{1..n}].

Notion of redex: Methods can be invoked or updated [1, Definition 6.2-1 (1)].
Here is the grammar of potential redexes:

pr ::= v.l | v.l ⇐ ς(x)t

The contraction rules read as follows:

vn.lj � tj{vn/xj}
if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti

i∈{1..n}]

vn.lj ⇐ ς(x)t � [lj = ς(x)t, li = ς(xi)ti
i∈{1..n}\{j}]

if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti
i∈{1..n}]

A potential redex is an actual one when its side conditions are satisfied, and
contraction can take place. Otherwise, the potential redex is stuck.

BNF of reduction contexts: The following grammar for reduction contexts does
not occur in Abadi and Cardelli’s book but it plausibly reflects the ‘evaluation
strategy of the sort commonly used in programming languages’ [1, Section 6.2.4,
page 63]:

(Context) C ::= [ ] | C[[ ].l] | C[[ ].l⇐ ς(x)t]

Lemma 1 (Unique decomposition). Any term which is not a value can be
uniquely decomposed into a reduction context and a potential redex.

One is then in position to define a decomposition function mapping a term
to either a value or to a reduction context and a potential redex, a contraction
function mapping an actual redex to its contractum, and a plug function mapping
a reduction context and a term to a term. Thus equipped, one can define a one-
step reduction function (noted → below) and then an evaluation function as
the iteration of the one-step reduction function (noted →∗ below). We have
implemented and copiously tested this reduction semantics (as well as all the
other semantic artifacts of this article) in Standard ML.

2.2 The Corresponding Abstract Machine

Applying the syntactic correspondence (i.e., calculating the refocus function)
yields the following eval/apply abstract machine [36]:
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〈v, C〉 ⇒S 〈C, v〉
〈t.l, C〉 ⇒S 〈t, C[[ ].l]〉

〈t.l ⇐ ς(x)t′, C〉 ⇒S 〈t, C[[ ].l ⇐ ς(x)t′]〉

〈[ ], v 〉 ⇒S v

〈C[[ ].lj ], vn〉 ⇒S 〈tj{vn/xj}, C〉
if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti

i∈{1..n}]

〈C[[ ].lj ⇐ ς(x)t], vn〉 ⇒S 〈C, [lj = ς(x)t, li = ς(xi)ti
i∈{1..n}\{j}]〉

if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti
i∈{1..n}]

This machine evaluates a closed term t by starting in the configuration 〈t, [ ]〉
and by iterating ⇒S (noted ⇒∗S below). It halts with a value v if it reaches a
configuration 〈[ ], v〉 It becomes stuck if it reaches either of the configurations
〈C[[ ].l], v〉 or 〈C[[ ].l ⇐ ς(x)t], v〉 and v does not contain a method with the
label l.

The following proposition is a corollary of the soundness of refocusing:

Proposition 1 (Full correctness). For any closed term t, t→∗ v if and only
if 〈t, [ ]〉 ⇒∗S v.

2.3 The Corresponding Natural Semantics

In Section 2.2, the function implementing the abstract machine is in defunc-
tionalized form [24]. Refunctionalizing it [22] yields an evaluation function in
continuation-passing style (CPS). Writing this evaluation function in direct style
[19] yields an evaluation function that implements the following natural
semantics:

(INVς)
	 t � vn 	 tj{vn/xj}� v

	 t.lj � v
if 1 ≤ j ≤ n, where
vn = [li = ς(xi)ti

i∈{1..n}]

(UPDς)
	 t � vn

	 t.lj ⇐ ς(x)t′ � [lj = ς(x)t′,
li = ς(xi)ti

i∈{1..n}\{j}]

if 1 ≤ j ≤ n, where
vn = [li = ς(xi)ti

i∈{1..n}]

This natural semantics coincides with Abadi and Cardelli’s [1, Section 6.2.4,
page 64].

The following proposition is a corollary of the soundness of the CPS transfor-
mation and of defunctionalization:

Proposition 2 (Full correctness). For any closed term t, 〈t, [ ]〉 ⇒∗S v if and
only if 	 t � v.
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2.4 Summary and Conclusion

Using the syntactic correspondence and the functional correspondence, we have
mechanically derived an abstract machine that mediates between Abadi and
Cardelli’s reduction semantics and natural semantics for the ς-calculus and the
‘evaluation strategy of the sort commonly used in programming languages.’ The
two derivations confirm (1) the soundness of the two semantics relative to each
other and (2) the BNF of the reduction contexts we put forward in Section 2.1.
They also pave the way to using closures, which we do next.

3 Object Methods as Closures: the ςρ-Calculus

We consider in turn a natural semantics for the ς-calculus with environments (Sec-
tion 3.1), the corresponding environment-based abstract machine (Section 3.2),
and the corresponding reduction semantics (Section 3.3). The resulting calculus
is one of explicit substitutions, the ςρ-calculus.

3.1 A Natural Semantics

Let us adapt the natural semantics of Section 2.3 to operate with environments.
Three changes take place:

1. The category of values changes to objects where each method holds its own
environment (noted ‘e’):

(Value) v ::= [l = (ς(x)t)[e], . . . , l = (ς(x)t)[e]]

2. The environment is defined as an association list:

(Environment) e ::= • | (x, v) · e
and an auxiliary function lookup is used to look up an identifier in the current
environment.

3. The evaluation judgment now reads as follows:

e 	 t � v

Again, we occasionally index a value with the number of its methods.
The two rules from Section 2.3 are then straightforwardly adapted:

(INVςρ)
e 	 t � vn (xj , vn) · ej 	 tj � v

e 	 t.lj � v
if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

(UPDςρ)
e 	 t � vn

e 	 t.lj ⇐ ς(x)t′ � v
if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]
and
v = [lj = (ς(x)t′)[e],

li = (ς(xi)ti)[ei]
i∈{1..n}\{j}]
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We also need the following rule to convert the methods of an object literal to
method closures:

(CLOςρ)
e 	 [li = ς(xi)ti

i∈{1..n}] � [li = (ς(xi)ti)[e]
i∈{1..n}]

In addition, we need the following new rule to look up variables in the current
environment:

(VAR-Lςρ)
e 	 x � v

if lookup (x, e) = v

Alternatively, and as done, e.g., in the Categorical Abstract Machine [16], one
could use two rules to incrementally peel off the environment. For closed terms,
x always occurs in e. For open terms, evaluation would become stuck here.

3.2 The Corresponding Abstract Machine

To apply the functional correspondence, we successively CPS-transform and de-
functionalize the evaluation function implementing the natural semantics of Sec-
tion 3.1. The grammar of evaluation contexts now reads as follows:

(Context) C ::= [ ] | C[[ ].l] | C[[ ].l ⇐ (ς(x)t)[e]]

All in all, the functional correspondence yields the following eval/apply ab-
stract machine:

〈x, e, C〉 ⇒E 〈C, v〉
if lookup (x, e) = v

〈[li = ς(xi)ti
i∈{1..n}], e, C〉 ⇒E 〈C, [li = (ς(xi)ti)[e]

i∈{1..n}]〉
〈t.l, e, C〉 ⇒E 〈t, e, C[[ ].l]〉

〈t.l ⇐ ς(x)t′, e, C〉 ⇒E 〈t, e, C[[ ].l⇐ (ς(x)t′)[e]]〉

〈[ ], v 〉 ⇒E v

〈C[[ ].lj ], vn〉 ⇒E 〈tj , (xj , vn) · ej , C〉
if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

〈C[[ ].lj ⇐ (ς(x)t)[e]], vn〉 ⇒E 〈C, [lj = (ς(x)t)[e], li = (ς(xi)ti)[ei]
i∈{1..n}\{j}]〉

if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

This machine evaluates a closed term t by starting in the configuration 〈t, •, [ ]〉
and by iterating ⇒E (noted ⇒∗E below). It halts with a value v if it reaches a
configuration 〈[ ], v〉. It becomes stuck if it reaches either of the configurations
〈C[[ ].l], v〉 or 〈C[[ ].l⇐ (ς(x)t)[e]], v〉 and v does not contain a method with the
label l.

The following proposition is a corollary of the soundness of the CPS transfor-
mation and of defunctionalization:
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Proposition 3 (Full correctness). For any closed term t, • 	 t � v if and
only if 〈t, •, [ ]〉 ⇒∗E v.

3.3 The Corresponding Reduction Semantics

BNF of terms, of values, and of closures: The BNF of terms does not change.
The BNF of values is as in Section 3.1. In addition, as in Curien’s λρ-calculus
compared to the λ-calculus, a new syntactic category appears, that of closures:

(Closure) c ::= t[e] | [l = (ς(x)t)[e], . . . , l = (ς(x)t)[e]] | c.l | c.l ⇐ (ς(x)t)[e]

Notion of redex: The two original contraction rules are adapted to closures as
follows:

vn.lj � tj [(xj , vn) · ej]
if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

vn.lj ⇐ (ς(x)t)[e] � [lj = (ς(x)t)[e], li = (ς(xi)ti)[ei]
i∈{1..n}\{j}]

if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]
i∈{1..n}]

As could be expected, there is also a contraction rule for looking variables up in
the environment:

x[e] � v
if lookup (x, e) = v

In addition, we need three contraction rules to propagate the environment inside
the terms:

[li = ς(xi)ti
i∈{1..n}][e] � [li = (ς(xi)ti)[e]

i∈{1..n}]

(t.l)[e] � t[e].l

(t.l ⇐ ς(x)t′)[e] � t[e].l⇐ (ς(x)t′)[e]

The grammar of potential redexes therefore reads as follows:

pr ::= v.l | v.l ⇐ (ς(x)t)[e] |
x[e] | [l = ς(x)t, . . . , l = ς(x)t][e] | (t.l)[e] | (t.l ⇐ ς(x)t′)[e]

BNF of reduction contexts: The grammar for reduction contexts is the same as
in Section 3.2.

Lemma 2 (Unique decomposition). Any closure which is not a value can
be uniquely decomposed into a reduction context and a potential redex.

One is then in position to define a decomposition function mapping a closure
to either a value or to a reduction context and a potential redex, a contraction
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function mapping an actual redex to its contractum, and a plug function mapping
a reduction context and a closure to a closure. Thus equipped, one can define
a one-step reduction function (noted → below) and then an evaluation function
as the iteration of the one-step reduction function (noted →∗ below).

Applying the syntactic correspondence yields the abstract machine from
Section 3.2.

The following proposition is a corollary of the soundness of refocusing:

Proposition 4 (Full correctness). For any closed term t, 〈t, •, [ ]〉 ⇒∗E v if
and only if t[•]→∗ v.

3.4 Summary and Conclusion

On the ground that practical implementations do not use actual substitutions, we
have presented an analogue of the ς-calculus, the ςρ-calculus, that uses explicit
substitutions. We have inter-derived three semantics artifacts for the ςρ-calculus:
a natural semantics, an abstract machine, and a reduction semantics. These
specifications are more suitable to support the formalization of a compiler since
programs do not change (through substitution) in the course of execution. One
is then free to change their representation, e.g., by compiling them.

On the other hand, environments open the issue of space leaks since some
of their bindings may become obsolete but can only be recycled when the en-
vironment itself it recycled. In functional programming, “flat” closures [13] (or
again “display” closures [26]) are used instead: closures whose environment is
restricted to the free variables of the term in the closure, which can be com-
puted at compile time. The ς-calculus, however, is too dynamic in general for
free variables to be computable at compile time: they need to be computed at
run time. One could thus consider another possibility: to represent environments
as a lightweight dictionary where each variable only occurs once.

4 Coherence between the ς-Calculus and the ςρ-Calculus

We establish the coherence between the ς-calculus and the ςρ-calculus by showing
that their abstract machines are bisimilar (Section 4.2). To this end, we first
introduce substitution functions mapping constructs from the ςρ-calculus to the
ς-calculus (Section 4.1).

4.1 From Closures to Terms

We define by simultaneous induction three substitution functions that respec-
tively map ςρ-values to ς-values, ςρ-terms to ς-terms, and environments of ςρ-
values to temporary environments of ς-values and variables:
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subV([li = (ς(xi)ti)[ei]
i∈{1..n}]) = [li = ς(xi)subT(ti, (xi, xi) · subE(ei))

i∈{1..n}]

subT(x, e) = lookup (x, e)
subT(t.l, e) = (subT(t, e)).l

subT(t.l ⇐ ς(x)t′, e) = (subT(t, e)).l ⇐ ς(x)subT(t′, (x, x) · e)

subE(•) = •
subE((x, v) · e) = (x, subV(v)) · subE(e)

Lemma 3. For any closed term t and any environment e, subT(t, e) = t.

Proof. By simultaneous induction on the definition of subV, subT, and subE [30].

Let us also define a substitution function subC that maps ςρ-contexts to ς-
contexts:

subC([ ]) = [ ]
subC(C[[ ].l]) = (subC(C))[[ ].l]

subC(C[[ ].l ⇐ (ς(x)t)[e]]) = (subC(C))[[ ].l ⇐ ς(x)subT(t, (x, x) · subE(e))]

4.2 A Bisimulation between the Two Abstract Machines

Definition 1. Let STςρ denote the set of states of the abstract machine for the
ςρ-calculus, and STς denote the set of states of the abstract machine for the
ς-calculus. The substitution relation 
S : STςρ × STς is defined as follows:

〈t, e, C〉 
S 〈subT(t, e), subC(C)〉
〈C, v〉 
S 〈subC(C), subV(v)〉

v 
S subV(v)

Theorem 1. The abstract machines from Sections 2.2 and 3.2 are weakly bisim-
ilar with respect to 
S.

Proof. By co-induction on the execution of the abstract machine for the ςρ-
calculus [30].

5 Related Work

The ς-calculus has already proved a fruitful playground. For example, Kesner
and López [33] have defined a set of contraction rules for the ς-calculus based
on explicit substitutions and flat closures. Due to the dynamic nature of the
ς-calculus, and as already pointed out in Section 3.4, managing flat closures
requires the evaluator to recompute sets of free variables dynamically during
evaluation. In contrast, we opted for deep closures here. For another example,
Gordon, Hankin and Lassen [29] have considered an imperative version of the
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ς-calculus extended with λ-terms. They have defined a natural semantics based
on explicit substitutions for their extended calculus, and proved it equivalent
to substitution-based big-step and small-step semantics. In addition, they also
provided a compiler to and a decompiler from a ZINC-like virtual machine [35].
Our approach is more inter-derivational and mechanical.

6 Conclusion and Issues

We have presented an abstract machine that mediates between Abadi and Car-
delli’s reduction semantics and natural semantics for the ς-calculus. We have then
presented a version of the ς-calculus with explicit substitutions, the ςρ-calculus,
and inter-derived a natural semantics, an abstract machine, and a reduction
semantics for it. By construction, each of these three semantic artifacts is sound
with respect to the two others. We have also shown that the abstract machines
for the ς-calculus and for the ςρ-calculus are bisimilar, thereby establishing a
coherence between the ς-calculus and the ςρ-calculus.

In the conclusion of “A Syntactic Correspondence between Context-Sensitive
Calculi and Abstract Machines” [11], Biernacka and Danvy listed 16 distinct,
independently published specifications of the control operator call/cc, and can-
didly asked whether all these artifacts define the same call/cc. It is the authors’
belief that inter-deriving these artifacts using correct transformations puts one
in position to answer this question.

As a side benefit, the nature of each inter-derivation makes it possible to
pinpoint the specific goodness of each of the semantic artifacts. For example, a
calculus in the form of a reduction semantics makes it possible to state equations
to reason about programs; an abstract machine gives one some idea about the
implementation requirements of a run-time system; and an interpreter in the
form of a natural semantics is well suited for prototyping. We have illustrated
these issues here with Abadi and Cardelli’s untyped calculus of objects.
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the PPS lab at the Université Paris 7 – Denis Diderot on a ‘poste rouge’ from the
CNRS, in the winter of 2007–2008. The first author is grateful to his office mate
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Abstract. The central open question in the field of descriptive complex-
ity theory is whether or not there is a logic that expresses exactly the
polynomial-time computable properties of finite structures. It is known,
from the work of Cai, Fürer and Immerman that fixed-point logic with
counting (FP + C) does not suffice for this purpose. Recent work has
shown that natural problems involving systems of linear equations are
not definable in this logic. This focuses attention on problems of linear
algebra as a possible source of new extensions of the logic. Here, I ex-
plore the boundary of definability in FP + C with respect to problems
from linear algebra and look at suggestions on how the logic might be
extended.

1 Introduction

The central open question in the field of descriptive complexity theory is whether
or not there is a logic that expresses exactly the polynomial-time computable
properties of finite structures. This question was first posed by Chandra and
Harel [7] in the context of database theory and reformulated in logical form by
Gurevich [19]. To be precise, the question is whether there is a logic L such
that for each sentence ϕ the class of finite structures satisfying ϕ is decidable
in polynomial time by an algorithm that can be effectively obtained from ϕ
and, for each polynomial time decidable class Q of finite structures there is a
sentence of L whose finite models are exactly the structures in Q. The original
motivation for the question given by Chandra and Harel was the desire to have
a database query language that balanced rich expressive power with guarantees
of feasible computability. However, the question also has a more fundamental
interest, related to our basic understanding of polynomial-time computation.
If there is a logic capturing P, that shows that we can construct polynomial-
time algorithms for all problems in P by composing a few basic operations—
corresponding to the constructs of the logic. On the other hand, to show that
there is no such logic (and this can be made mathematically precise, see [19]), is
to show that no finite basis of operations will do. Furthermore, since it is known
from the results of Fagin [15] that existential second-order logic captures NP,
a proof that there is no logic capturing P would show a fundamental difference
between these two complexity classes and indeed separate them (see [22] for a
more detailed explanation).

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 17–25, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



18 A. Dawar

2 Fixed-Point and Counting Logics

It has been noted (see [25]) that first-order logic has two fundamental weak-
nesses when it comes to expressing feasibly computable properties: (1) the lack
of a mechanism for recursive definitions, which means, for instance, that the
transitive closure of a definable relation is not itself first-order definable; and (2)
the inability to count which means, for instance, that the computationally sim-
ple property of having an even number of elements is not first-order definable.
Extensions of first-order logic have been defined to address these weaknesses.

The addition to first-order logic of a mechanism for recursive definitions leads
us to the logic LFP of least fixed points. This adds to the rules of first-order logic
the following formula-formation rule: if ϕ is a formula, positive in the relational
variable R, x is a tuple of first-order variables and t a tuple of terms, both of the
same length as the arity of R, then [lfpR,xϕ](t) is also a formula (see [14] or [23]
for a more detailed exposition of this logic). The intended reading of the formula
is that the tuple t is in the least fixed point of the operator that maps a relation
R to the relation defined by ϕ(R,x). A logic on these lines was first-proposed as a
query language for databases by Aho and Ullman [1]. It is easy to show that every
formula of LFP still defines a polynomial-time decidable property. If we consider
only ordered structures, then it turns out that LFP is powerful enough to express
all polynomial-time properties, as was shown independently by Immerman and
Vardi [21,26]. The presence of the order is crucial to this result, as it enables the
inductive definition of a polynomial-time Turing machine computation. In the
absence of a linear order, the second weakness of first-order logic still manifests
itself. That is, LFP on unordered structures still cannot express simple counting
properties.

Fixed-Point Logic with Counting. Immerman [21] suggested adding a mechanism
for counting to the logic LFP in the hope of obtaining a logic that characterises P.
To be precise, the logic FP + C has two sorts of variables: v1, v2, . . . ranging over
the domain elements of the structure, and ν1, ν2, . . . ranging over the numbers.
When a formula ϕ is interpreted in a structure A, the number variables occurring
in ϕ are interpreted as ranging over the set {0, . . . , n} where n is the number
of elements in A. In addition, we also have second order variables X1, X2, . . .,
each of which has a type, which is a finite string in {element, number}∗. Thus,
for instance, if X is a variable of type (element,number), it is to be interpreted
by a binary relation relating elements to numbers. The logic allows us to build
up counting terms according to the following rule: if ϕ is a formula and x is a
variable of the first sort, then #xϕ is a term. The intended semantics is that
#xϕ denotes the number (i.e. the member of the number sort) of elements that
satisfy the formula ϕ.

The formulas of FP + C are now described by the following set of rules:

– all atomic formulas of first-order logic are formulas of FP + C;
– if τ1 and τ2 are terms of numeric sort (that is each one is either a number

variable or a term of the form #xϕ) then each of τ1 < τ2 and τ1 = τ2 is a
formula;
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– if ϕ and ψ are formulas then so are ϕ ∧ ψ, ϕ ∨ ψ and ¬ψ;
– if ϕ is a formula, x is an element variable and ν is a number variable then
∃xϕ and ∃ν ϕ are formulas; and

– if X is a relation symbol of type σ; x is a tuple of variables whose sorts
match the type σ; t is a tuple of terms of type σ; and ϕ is a formula in which
X only appears positively, then [lfpX,x,νϕ](t) is a formula.

Infinitary Logic with Counting. It turns out that FP + C is still too weak to
express all polynomial-time properties of finite structures, as was proved by Cai
et al. [6]. To put this result in context, it is useful to introduce Cω∞ω , an infinitary
logic with counting. Cω∞ω is obtained from first-order logic by allowing:

– infinitary conjunctions and disjunctions:
∨{ϕ | ϕ ∈ S} ∧{ϕ | ϕ ∈ S} for

arbitrary sets S;
– counting quantifiers : ∃ixϕ; and
– only finitely many distinct variables in any formula.

Ck∞ω is the fragment of Cω∞ω where each formula has at most k variables. It can
be shown that every sentence of FP + C is equivalent to one of Cω∞ω. Indeed,
it has been shown [24] that the expressive power of FP + C corresponds to the
polynomial-time uniform fragment of Cω∞ω.

The expressive power ofCω∞ω is not confined to P, or indeed to decidable proper-
ties. However, the construction of Cai et al. shows that there are polynomial-time
properties of graphs that are not definable even inCω∞ω . More precisely, they show
how to construct a sequence of pairs of graphs Gk, Hk(k ∈ ω) such that:

– Gk ≡Ck
∞ω Hk for all k, i.e. Gk and Hk cannot be distinguished by any sen-

tence of Ck∞ω
– There is a polynomial time decidable class of graphs that includes Gk, for

all k, and excludes all Hk.

The graphs Gk and Hk are obtained from a single graph G by a transformation
that replaces every edge by a pair of edges and every vertex by a gadget (see [22,
Chap. 13] for details). They are non-isomorphic graphs but it is shown that if G
has no balanced separator of fewer than k vertices, than Gk ≡Ck

∞ω Hk. Indeed,
we can show [13] that a weaker condition, namely that G is connected and has
treewidth greater than k is sufficient. It seems likely that the latter condition is
also necessary.

Following the proof of Cai et al. further inexpressibility results have been
obtained by similar methods. Gurevich and Shelah [20] constructed a class of
structures called multipedes that is first-order definable, contains only rigid struc-
tures and on which no linear order is uniformly definable in Cω∞ω . I was able to
show [9] that 3-colourability of graphs is not definable in Cω∞ω . The constructions
involved in the proofs of both these results bear a strong family resemblance to
the construction of Cai, Fürer and Immerman.

In spite of the fact that FP + C is too weak to express all polynomial-time
computable properties, it forms a natural level of expressiveness it its own right
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and has been shown to capture P on many interesting restricted classes of struc-
tures, such as planar graphs [17] and graphs of bounded treewidth [18]. More-
over, since the examples of polynomial-time properties that had been proved to
be inexpressible in FP + C, such as the Cai-Fürer-Immerman graphs and the
ordering on multipedes, were not the kind of natural queries one might ask, it
was sometimes said that all natural polynomial-time queries are expressible in
FP + C (3-colourability is certainly a natural query that was proved inexpress-
ible in Cω∞ω , but it is not known or believed to be in P). Nevertheless, it has
recently been shown that underlying all these various examples, there is a natu-
ral polynomial-time decidable problem that is not expressible in FP + C, namely
the solvability of linear equations over a two-element field.

3 Problems from Linear Algebra

We begin by examining how we can represent systems of linear equations over
the field Z/2Z as unordered relational structures. First, consider a system of
equations with at most three variables per equation, so each equation is of the
form: x1 +x2 +x3 = a with (a = 0 or 1). We consider this system as a relational
structure over the domain {x1, . . . , xn} of variables with two ternary relations:

R0 = {(xi, xj , xk) | xi + xj + xk = 0 is an equation}
R1 = {(xi, xj , xk) | xi + xj + xk = 1 is an equation}

Let Solv3(Z/2Z) be the class of such structures that represent solvable systems.
It is shown in [2] that Solv3(Z/2Z) is not definable in Cω∞ω.

For the more general case, where we do not limit ourselves to three variables
per equation, we can consider structures over the domain {x1, . . . , xn, e1, . . . , em}
where the xi are variables as before and the ej are the equations. We have the
following relations on this domain:

– a unary relation E0 that includes just those equations e whose right hand
side is 0;

– a unary relation E1 that includes just those equations e whose right hand
side is 1; and

– a binary relation M with M(x, e) if x occurs on the left hand side of e.

Writing Solv(Z/2Z) for the class of such structures representing solvable equa-
tions, it is not difficult to show that Solv3(Z/2Z) is reducible by a first-order
reduction to Solv(Z/2Z). Since Cω∞ω is closed under first-order reductions, it fol-
lows from the above-mentioned result of [2] that Solv(Z/2Z) is not definable in
Cω∞ω either.

It should be noted that Solv(Z/2Z) is indeed a polynomial-time decidable
class as systems of equations can be efficiently solved, for instance by Gaussian
elimination. The construction in [2] to show that Solv3(Z/2Z) is not definable in
Cω∞ω is similar in form to that of Cai, Fürer and Immerman [6] and can be seen
to show that underlying the latter construction is indeed the undefinability in
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FP + C of the solvability of linear equations. Indeed, it can be shown that both
the Cai-Fürer-Immerman graphs and the problem of ordering multipedes are
reducible to Solv(Z/2Z) [10] by first-order definable reductions. Of course, we do
not expect to show that 3-colourability is reducible to Solv(Z/2Z) as this would
imply P = NP. However, the construction in [9] that shows 3-colourability is not
definable in Cω∞ω uses a special class of graphs and it is not difficult to show
that on these the problem is efficiently decidable, and reducible to Solv(Z/2Z).
In other words, Solv(Z/2Z) emerges as the canonical polynomial-time problem
that is not definable in FP + C. This leads us naturally to ask how much linear
algebra is expressible in FP + C. It turns out that a surprising amount is.

We can identify a binary relation A ⊆ I × I over a set I with a matrix M
over Z/2Z by letting Mij = 1 ⇔ (i, j) ∈ A. Note, the set I (which we call
the index set) is unordered, so we are going to be interested in properties of
the matrix M that are invariant under simultaneous permutations of its rows
and columns. Equivalently, seeing M as a linear operator on the vector space
(Z/2Z)I , we are interested in those properties of the operator that are invariant
under a permutation of the basis. This includes most natural properties of M .

We begin by noting that it is easy to express matrix multiplication in FP + C.
Define the formula prod as follows.

prod(x, y, A,B) = ∃ν1∃ν2(ν1 = #z(A(x, z) ∧B(z, y)) ∧ (ν1 = 2 · ν2 + 1)).

It is easily seen that the binary relation defined by prod(x, y) is the product of
the two matrices A and B. A simple application of lfp then allows us to define
upower(x, y, ν, A) which gives the matrix Aν . To be precise, we define the formula
by:

upower(x, y, ν, A) = [lfpR,uv (∀μ(ν ≤ μ) ∧ u = v∨
∃μ(ν = μ+ 1 ∧ prod(u, v,B/R(μ), A))](x, y),

where ν = μ + 1 is defined in the natural way on the number domain and
prod(u, v,B/R(μ), A) is the formula obtained from prod(u, v, A,B) by replacing
the occurrence of B(z, v) by R(z, v, μ).

Instead of representing the power to which we wish to raise the matrix A by
a single numerical variable ν, we can represent it in binary, as a set of numeric
values. In other words, we take a unary relation Γ of numeric sort to code the
number

∑
γ∈Γ 2γ . This allows us to use repeated squaring to define a formula

power(x, y, Γ,A) giving AN where Γ codes a number N whose value may be
exponentially larger than the size of I (the index set). This now enables us to
show that non-singularity of matrices is definable in FP + C, by an argument
due to Blass et al. [4]. Consider GL(n,Z/2Z), the general linear group of degree
n over Z/2Z, i.e. the group of non-singular n × n matrices over Z/2Z. Blass
et al. note that the order of this group is

∏n−1
i=0 (2n − 2i), and a unary relation

representing this number can be expressed by a formula of FP + C. Thus, we
can write a formula representing AN , and A is non-singular if, and only if, this
is the identity matrix. By the same token, we can define the inverse of A since
A−1 = AN−1.
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We could ask the same definability questions with regard to matrices over an
arbitrary finite field Fq other than Z/2Z. We can represent matricesM over Fq by
taking, for each a ∈ Fq, a binary relation Aa ⊆ I × I with Mij = a⇔ (i, j) ∈ Aa.
Alternatively, we could have the elements of Fq (along with the field operations)
as a separate sort and include a ternary relation R with Mij = a⇔ (i, j, a) ∈ R.
It is easy to see that these two representations are interdefinable, in that, for each
fixed field Fq, we can define a first-order interpretation of either one in the other.

The definability results for matrices over Z/2Z extend easily to other finite
fields. In particular, the argument for the definability of non-singularity and of
the inverse of a matrix are easily seen to apply. The proof that the solvability of
systems of equations is undefinable extends similarly. However, computing the
determinant of a matrix is a more interesting problem. In the case of matrices
over Z/2Z determining singularity is the same thing as computing the determi-
nant as there is only one possible non-zero value that the determinant can take.
The problem of computing the determinant over other fields is somewhat trick-
ier. However, Rossman observed that Csanky’s algorithm [8] for computing the
determinants of integer matrices can be expressed in the formalism of choiceless
polynomial time with counting. As noted by Blass and Gurevich [3] this means
that computing the determinant over any finite field can also be expressed in
this formalism. My student, Bjarki Holm [10], has strengthened this by showing
that these algorithms do yield definability of the determinant in FP + C, both
for integer matrices and for matrices over an arbitrary finite field, or indeed over
the integers.

While the determinant of a matrix can be defined in FP + C, it is clear that
there can be no formula of the logic that defines the rank of a matrix, either over
Z/2Z or any other finite field. If such a formula existed, we would also be able
to define Solv(Z/2Z), as from an instance of Solv(Z/2Z) representing a system
of equations Ax = b, we can easily define the two matrices A and Ab, and the
system is solvable if, and only if, the two matrices have the same rank.

It appears that linear algebra provides an interesting frontier in which to
explore the limits of definability of FP + C. Some problems, such as computing
the determinant of a matrix, turn out to be definable though through non-
trivial means. On the other hand, closely related problems, such as computing
the rank of a matrix are not expressible in the logic. It is worth remarking that
in terms of computational complexity, these problems are very similar. To be
precise, the problems of computing the determinant, the rank, or the inverse of
a matrix over Z/2Z are all complete for the complexity class ⊕L under logspace-
reductions [5]. ⊕L is the complexity class containing languages L for which there
is a nondeterministic, logspace machine M such that x ∈ L if, and only if, the
number of accepting paths of M on input x is odd. ⊕L contains the class L and
is also conjectured to contain NL. A natural complete problem for ⊕L is ⊕GAP
which, given an acyclic, directed graph G with distinguished vertices s and t asks
whether the number of distinct paths from s to t is odd. It is easily verified that
this problem can be expressed in FP + C as it amounts to checking the entry in
(AnG)st where A is the adjacency matrix of the graph G.
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4 Further Directions

The previous section has established that problems in linear algebra provide a
fertile testing ground for the expressivity of logics such as FP+C. There is a fine
line between parameters of a matrix that are definable, such as the determinant,
and those that are not, such as the rank. One could also say that we have
discovered a third weakness in first-order logic, to go along with the lack of
a mechanism for inductive definitions and the inability to count—namely, the
inability to determine the row-rank of a binary relation. As it turns out, this
is just the second weakness in a different guise and a more accurate summary
might be that the counting mechanism that was added to LFP to obtain FP + C
turns out to be inadequate to capture the full power of counting and a more
general mechanism is required.

Suppose that, instead of the counting terms #xϕ to denote the number of
elements satisfying ϕ, we could form a term rkxyϕ which binds the variables x
and y in ϕ and denotes the number that is the row-rank of the binary relation
ϕ(x, y). We can define #xϕ in terms of this new operator, as it is equivalent
to the term rkxy(x = y ∧ ϕ(x)). Thus, the rank operator rk can be seen as a
more general form of the counting operator. Moreover, in LFP extended with
this rank operator, we can define Solv(Z/2Z). More generally, writing FP+R for
the logic that extends LFP with a rank operator of each arity (i.e. it allows us to
form terms rkrxyϕ, where x and y are r-tuples of variables) we find that we can
define in FP + R the Cai-Fürer-Immerman graphs, the ordering on multipedes
and indeed every polynomial time problem which we have previously proved
undefinable in FP + C. What is the expressive power of FP + R? Could it be all
of P? This seems unlikely, but it remains a challenge to find a polynomial-time
problem that is not definable in this logic. The particular rank operator may not
be to everyone’s taste as a logical operator. Might one find other, perhaps more
general, ways of incorporating linear algebraic operators in a logic for P?

The proposal above for a logic FP + R is not the first proposed way of ex-
tending the expressive power of FP+C to encompass the examples of Cai, Fürer
and Immerman. Other notable efforts include Choiceless Polynomial Time with
Counting [4] and the logic of Specified Symmetric Choice [16,12,11]. However, it
remains an open question whether either of these logics can express Solv(Z/2Z).

A related open question, posed in [4] is whether the problem of general graph
matching is definable in FP + C. It is known that matching on bipartite graphs
is definable [4]. The close relationship between graph matching and problems of
linear algebra leads us to include this among related directions of research.

5 Conclusion

In conclusion, in seeking to find a logic to capture P, we are seeking to build the
complexity class P from below. Extending first-order logic with mechanisms for
recursion and counting takes us so far, and the limits of this can be described in
terms of linear algebra. Matrix rank seems to be a more general way to include
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counting in the logic than a simple operator for cardinality, and takes us further.
It remains an active area of research to explore the boundary of expressibility
and see how much of the complexity class P we can build from below.
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Tutorial 1: A Rosetta Stone for Quantum Computing

Abstract. This talk will give an overview of quantum computing in an intu-
itive and conceptual fashion. No prior knowledge of quantum mechanics will be
assumed.

The talk will begin with an introduction to the strange world of the quantum.
Such concepts as quantum superposition, Heisenberg’s uncertainty principle, the
“collapse” of the wave function, and quantum entanglement (i.e., EPR pairs) are
introduced. This part of the talk will also be interlaced with an introduction to
Dirac notation, Hilbert spaces, unitary transformations, quantum measurement,
and the density operator.

Simple examples will be given to explain and to illustrate such concepts as
quantum measurement, quantum teleportation, quantum dense coding, and the
first quantum algorithm, i.e., the Deutsch-Jozsa algorithm.

The PowerPoint slides for this talk will be posted at the URL: http://www.
csee.umbc.edu/~lomonaco/Lectures.html

Tutorial 2: Quantum Algorithms: Past, Present, and
Future

Abstract. The talk begins with the present, i.e., with an overview of the current
status of quantum algorithms. The talk then moves to the past by explaining and
illustrating two quantum algorithms, i.e., Grover’s Search Algorithm and Shor’s
Factoring Algorithm. Shor’s algorithm is then generalized to the larger class
of quantum hidden subgroup algorithms. In this context, Grover’s algorithm
is then shown to be very similar to Shor’s. Finally, the talk ends with future
predictions, i.e., with a discussion as to how one might find and create new
quantum algorithms.

The PowerPoint slides for this talk will be posted at the URL: http://www.
csee.umbc.edu/~lomonaco/Lectures.html

Invited Talk: Quantum Knots and Mosaics

Abstract. In this talk, we give a precise and workable definition of a quantum
knot system, the states of which are called quantum knots. This definition can
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be viewed as a blueprint for the construction of an actual physical quantum
system.

Moreover, this definition of a quantum knot system is intended to represent the
”quantum embodiment” of a closed knotted physical piece of rope. A quantum
knot, as a state of this system, represents the state of such a knotted closed piece
of rope, i.e., the particular spatial configuration of the knot tied in the rope.
Associated with a quantum knot system is a group of unitary transformations,
called the ambient group, which represents all possible ways of moving the rope
around (without cutting the rope, and without letting the rope pass through
itself.)

Of course, unlike a classical closed piece of rope, a quantum knot can exhibit
non-classical behavior, such as quantum superposition and quantum entangle-
ment. This raises some interesting and puzzling questions about the relation
between topological and quantum entanglement. The knot type of a quantum
knot is simply the orbit of the quantum knot under the action of the ambient
group. We investigate quantum observables which are invariants of quantum
knot type. We also study the Hamiltonians associated with the generators of the
ambient group, and briefly look at the quantum tunneling of overcrossings into
undercrossings.

A basic building block in this paper is a mosaic system which is a formal
(rewriting) system for symbol strings. We conjecture that this formal system
fully captures in an axiomatic way all of the properties of tame knot theory.

The PowerPoint slides for this talk will be posted at the URL: http://www.
csee.umbc.edu/ lomonaco/Lectures.html

http://www.csee.umbc.edu/~lomonaco/Lectures.html
http://www.csee.umbc.edu/~lomonaco/Lectures.html


On Game Semantics of the Affine and

Intuitionistic Logics

(Extended Abstract)

Ilya Mezhirov1 and Nikolay Vereshchagin2,�

1 The German Research Center for Artificial Intelligence,
TU Kaiserslautern

ilya.mezhirov@dfki.uni-kl.de
2 Lomonosov Moscow State University,

Leninskie Gory, Moscow 119991
ver@mccme.ru

Abstract. We show that the uniform validity is equivalent to the non-
uniform validity for both Blass’ semantics of [1] and Japaridze’s seman-
tics of [5] (thus proving a conjecture from [5]). We present a shorter
proof (than that of [10]) of the completeness of the positive fragment of
intuitionistic logic for both these semantics. Finally, we show that valid-
ity for the “parallel recurrence” version of Japaridze’s semantics of [5] is
equivalent to accomplishability in the sense of [4].

1 Logic of Tasks and Intuitionistic Logic

The linear and affine logics of Girard [3] are often understood as logics of resources.
Propositional variables mean certain types of abstract resources (rather than as-
sertions, as in classical logic). Each occurrence of a variable p identifies one unit of
a resource p. The connectives ∧ (the multiplicative AND), ∨ (the multiplicative
OR), � (the additive AND), � (the additive OR), ¬ (the negation), !, ? (exponen-
tial AND and OR) and 0,1 (constants) have the following meaning. The expres-
sion x∧ y means one unit of x and one unit of y (for example, x∧x is two units of
the resource x). The expression x � y means an obligation to provide one unit of
the resource x or one unit of the resource y where the consumer of resources (the
user) makes the choice between x and y (for example, x�x is the same as x). The
formula x�y means also an obligation to provide one unit of the resource x or one
unit of the resource y. However, this time the choice between x and y is made by
the provider (again x � x is the same as x).

What is the interpretation of ∨ (multiplicative OR)? Let us use the following
metaphor. Assume that resources are coins of different types. Each occurrence
of a variable x is regarded as a coin of type x. The coins can be genuine or
fake, and the consumer cannot distinguish between genuine and fake ones. The
expression x ∨ y is understood as a pair of coins, a coin of type x and a coin of
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type y, such that at least one of them is genuine (however, the user does not
know which one).

The expression ¬x means the obligation of the user to pass to the provider
one coin of type x (we can understand x also in this way, as the obligation of the
provider to pass to the user one coin of type x). The formula !x is understood as
an infinite stock of genuine coins of type x. The expression ?x means an infinite
stock of coins of type x such that at least one coin in the stock is genuine (and
the user does not know which one). In other words !x is a countable version
of the multiplicative AND x ∧ x ∧ x . . . , and ?x is a countable version of the
multiplicative OR x ∨ x ∨ x . . . .

The constants 0,1 are understood as non-accomplishable obligations (tasks):
0 is the obligation of the provider and 1 is the obligation of the user.

In the next section we give a formal definition of the semantics which clarifies
this intuition. From both the technical and philosophical viewpoints, this seman-
tics coincides with Japaridze’s “The logic of tasks” semantics defined in [4] and
later extended to what has been termed abstract resource semantics in [8]. What
we call “a coin” is called “a task” in [4]. A genuine coin is a task accomplished
by the provider. A false coin is a task that the provider failed to accomplish. We
are using a different language, as we think our language is more convenient to
present the definition.

1.1 The Semantics

Fix a countable set of variables x1, x2, . . . . A literal is a variable xi or a negated
variable ¬xi, called dual to xi. The literals of the form xi are called positive and
literals of the form ¬xi are called negative. Formulas are obtained from liter-
als, constants 1,0 and connectives ∧,∨,�,�, ?, ! in the usual way. We consider
formulas where negations appear only before variables. When we write ¬A, we
always mean the formula dual to A, that is, the formula which is obtained from
A by changing each connective, each variable and its constant to its dual: ∨ ↔ ∧,
� ↔ �, !↔ ?, ¬xi ↔ xi and 1↔ 0.

Each formula is assigned a two player game [A] of perfect information between
Provider (or, Producer) and User (or Consumer). If A is derivable in the affine
logic then the Consumer will have a winning strategy in the game [A].

First we replace in A each occurrence of a formula of the type !B by the
formula B ∧B ∧B . . . , and each occurrence of a formula of the type ?B by the
infinite formula B ∨ B ∨ B . . . . It is easy to see that the order of replacements
does not affect the result, which is an infinite formula of a finite depth.

In the game [A], the players make moves in turn. It does not matter who
moves first. In his turn, Producer may perform any finite sequence p1, . . . , pk of
actions (the sequence may be empty). Each action pi has the form “choose the
left formula in B � C” or “choose the right formula in B � C”, where B � C is
an occurrence of a formula in A.

For each occurrence of a formula B � C in A Producer may only once make
an action of the type “choose something in B � C” and he is unable to change
the choices he has made.
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In her turn, Consumer may also perform any finite (possibly empty) sequence
of actions. Each her action has one of the following two forms. (1) “Choose the
left (right) formula in B�C” where B�C is an occurrence of a formula in A. (2)
“Allocate U to V ”, where U is an occurrence of a negative literal in A and V is an
occurrence of a positive literal similar to U (the literals are called similar if they
have the same variable: xi and ¬xi are similar). The informal meaning of this
action is that Consumer wants to accomplish her obligation V using the coin U .
It is instructive to visualise this action as follows. Imagine that each occurrence
of a negative literal ¬x is a box belonging to Producer and containing a coin of
type x. Regard all occurrences of positive literals x as empty boxes of type x
belonging to Consumer. The action U �→ V moves the coin from the box U to
the box V . According to this interpretation, we will sometimes call occurrences
of the negative literals Producer’s boxes and occurrences of the positive literals
Consumer’s boxes.

For each occurrence of a positive literal V Consumer may perform at most
one action of the form U �→ V , and for each occurrence of a negative literal U
she may perform at most one action of the form U �→ V (every box can contain
at most one coin). Consumer is not allowed to move coins in the other direction
(from her boxes to Producer’s ones). Neither is she allowed to move coins from
boxes to “nowhere”. In other words, actions of type (2) establish a matching
between Producer’s and Consumer’s boxes that respects variable’s names. Note
that Producer is not allowed move coins at all.

For each occurrence of a formula B � C in A Consumer may only once make
an action of the type “choose something in B � C”.

Each play consists of infinite (countably many) number of moves. When the
play is finished, we define who has won as follows. Call a coin evaluation a
mapping e from Producer’s boxes to the set {f, g}. If e(U) = f we say that the
coin in the box U is fake, otherwise (if e(U) = g) we say that it is genuine.

Given a coin evaluation, we recursively define for each occurrence of a formula
B in A who has won B, Consumer or Producer.

(1) If V is an occurrence of a positive literal, then Consumer has won V iff,
in the course of the play, Consumer has performed an action “allocate U to V ”
and e(U) = g. In other words, if in the end of the game the box V contains a
genuine coin. If the box V is empty or contains a fake coin then Consumer has
lost V .

(2) If U is an occurrence of a negative literal, then Consumer has won U iff
e(U) = f.

Rules (1) and (2) imply the following. If Consumer has performed an action
“allocate U to V ” then exactly one of U, V is won by Consumer.

(3) Consumer has won an occurrence of a formula B ∧C iff she has won both
B and C. She has won an occurrence of a formula B ∨C iff she has won B or C.

(4) In a similar way we define who has won occurrences of !B and ?B: an
occurrence B1 ∧ B2 ∧ B3 . . . (we use subscripts to distinguish between differ-
ent occurrences of B) is won by Consumer iff she has won all the occurrences
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B1, B2, B3 . . . . An occurrence B1 ∨ B2 ∨ B3 . . . is won by Consumer iff she has
won at least one of the occurrences B1, B2, B3 . . . .

(5) Consumer has won an occurrence of B � C iff, in the course of the play,
she has decided between B and C in B � C and has won the chosen formula.
That is, she has performed the action “choose the left formula B � C” and she
has won B, or she has performed the action “choose the right formula in B�C”
and she has won C. If she has not decided between B and C in B �C then she
has lost B � C.

(6) For a subformula of the form B � C the definition is similar (we swap
Consumer and Producer). Producer has won an occurrence of A � B iff in the
course of the play, he has decided between B and C in B � C and has won the
chosen formula.

(7) Every occurrence of 0 is won by Producer and every occurrence of 1 is
won by Consumer.

Finally, we say that the Consumer has won the play iff for every coin evaluation
e she has won the entire formula A.

There is an equivalent way to define who was won the play. In the end of the
play replace by 0 all the occurrences of the formulas of type B �C in A such that
Consumer has not chosenB or C. Replace by 1 all the occurrences ofB�C where
Producer has not decided between B and C. Replace each remaining occurrence
of a formula of the form B �C or B �C by the chosen subformula. (The order of
replacements does not affect the result.) Then replace each occurrence of a variable
by a new variable in such a way that matching occurrences are replaced by the
same variables and non-matching occurrences by different ones. (We call matching
the occurrences of x in U and V such that Consumer has allocated U to V .) The
resulting formula is an infinite formula of finite depth with connectives ∨,∧ and
constants 1,0. Consumer has won the play iff this formula is a classical tautology
(where ∧ is understood as AND, ∨ as OR, and ¬x as the negation of x).

The above described transformation is what is called elemntarization in [4,5,6].
The definition of the game [A] is completed. We call a formula A accomplish-

able1 if Consumer has a winning strategy in the game [A]. We call a formula A
computably accomplishable if Consumer has a computable winning strategy in
the game [A].

If A has no exponential connectives then the game [A] is essentially finite
(every player can perform only finitely many actions) and thus the game [A] is
accomplishable iff it is computably accomplishable. In this case at least one of
the players has a (computable) winning strategy.

In the general case it is unknown whether accomplishability is equivalent to
computable accomplishability.

Note that the rules of the game favour Producer. For example, it might happen
that Producer has a winning strategy in both games A and ¬A. This happens,
say for A = x.

The simplest accomplishable formula is x∨¬x: in order to win Consumer just
moves Producer’s coin to her box.
1 We use here the terminology of [4].
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Important remark. It is important that Consumer cannot distinguish fake and
genuine coins. (Formally, that means that we choose coin evaluations after the play
is finished.) That is why the formula A = (¬x∧¬x)∨x, which is not derivable in
the affine logic, is not accomplishable. In the game [A] Consumer has essentially
two strategies: (1) she moves the first of Producer’s coins (2) she moves the second
one. Both strategies do not win. Indeed, if only one coin is genuine, namely, the
coin that has not been moved, Consumer looses the formula A.

The definition of an accomplishable formula is very robust: we can change the
definition of the game in many ways so that the class of (computably) accom-
plishable formulas does not change. Below we present several such modifications.

1. We can forbid Consumer (or Producer, or both) to perform several actions
in one move. Indeed, postponing actions never hurts the player. By the same
reason it does not matter who starts the play.2

2. We can ban all actions inside occurrences B and C belonging to an occur-
rence of B � C [or B � C] such the choice action has not yet been applied to
B � C [B � C, respectively].

3. We can assume that all the Producers boxes are empty at the start of the
play and he is allowed to perform an action “deposit a coin in a box”. Consumer
is allowed to apply action “allocate U to V ” only when U is not empty. At the
end of a play a Producer’s box is won by him iff he has deposited a genuine coin
in it.

4. We can define the game [A] recursively. To this end we need a notion of a
“game with coins” and operations on such games that correspond to connectives.

Games of the form [A] can be regarded as vending machines: Consumer’s boxes
can be identified with slots for coins and Producer’s boxes with compartments for
releasing the products. For instance, a vending machine that accepts 1 Euro coin
and 50 cents coins and sells coffee and tee, for 1 Euro each, can be represented
by the formula

!(¬(1 Euro � (50 cents ∧ 50 cents)) ∨ (tee � coffee)).

Informally, the game [A] is accomplishable iff the vending machine can work
without having any resources in advance.

Historical remarks. As we have said, the notion of an accomplishable formula
was defined in [4] (Logic of Tasks semantics). That paper also provides a sound
and complete calculus for additive fragment of accomplishable formulas. For the
multiplicative fragment an equivalent semantics was defined in [8] (Abstract Re-
source Semantics) together with a sound a complete calculus (CL5). Finally,
the calculus CL4 from [8] provides a sound and complete axiomatisation for the
set of all accomplishable formulas that have no exponential connectives. It is
unknown whether the entire set of accomplishable formulas is computably enu-
merable. The similar question is open for computably accomplishable formulas
as well.
2 The games having that property are called static, see e.g. [5]. We will consider other

static games in the next section.
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1.2 Accomplishable Formulas and Affine Logic

We will use the following variant of affine logic. A sequent is a finite list of for-
mulas. A sequent consisting of formulas A1, . . . , An is denoted by 	 A1, . . . , An.
The order of formulas in a sequent does not matter, but the multiplicity of each
formula matters. That is, 	 p, p and 	 p are different sequents.

Axioms : 	 A,¬A, 	 1.
Derivation rules:

�Γ,A �Δ,¬A
�Γ,Δ (Cut). �Γ,A �Δ,B

�Γ,Δ,(A∧B) (Introducing ∧).
�Γ,A,B
�Γ,(A∨B) (Introducing ∨). �Γ,A �Γ,B

�Γ,(A�B) (Introducing �).
�Γ,A

�Γ,(A�B) , �Γ,B
�Γ,(A�B) (Introducing �). �Γ

�Γ,A (Weakening).
�Γ,A
�Γ,?A (Dereliction). �Γ,?A,?A

�Γ,?A (Contraction). �?Γ,A
�?Γ,!A (R).

Here ?Γ denotes the list obtained from Γ by prefixing by ? all formulas in
the list.

Call the formula A1∨ . . .∨An the formula image of the sequent 	 A1, . . . , An.
If the list is empty (that is, n = 0), its formula image is equal to 0. A sequent is
called (computably) accomplishable if so is its formula image.

Theorem 1. The set of accomplishable sequents contains all axioms of the affine
logic and is closed under all its derivation rules and under the substitution.
The same applies to computable accomplishable formulas. (Hence all derivable
formulas are computably accomplishable.)

The affine logic is not complete with respect to accomplishability semantics. An
example of an accomplishable non-provable formula is

[(¬a ∨ ¬b) ∧ (¬c ∨ ¬d)] ∨ [(a ∨ c) ∧ (b ∨ d)].

(This formula was used by Blass in [1] to show that the affine logic is incomplete
with respect to his semantics.)

1.3 Accomplishable Formulas and the Intuitionistic Propositional
Calculus IPC

Consider the Girard’s translation from the language of propositional formulas
with connectives ∧,∨,→,⊥ into the language of affine logic. Each formula A is
assigned a formula A∗ defined recursively: (xi)∗ = xi and

(A ∨B)∗ = !A∗ � !B∗, (A ∧B)∗ = A∗ �B∗,
(A→ B)∗ = ¬(!A∗) ∨B∗ = ?(¬A∗) ∨B∗, ⊥∗ = 0.

This translation preserves provability. The next lemma shows that the com-
bination of this translation with accomplishability semantics yields a sound se-
mantics for the intuitionistic calculus.
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Lemma 1. The set L of all formulas A whose translation A∗ is accomplishable
is a super-intuitionistic logic (that is, L contains all axioms of IPC and is closed
under Modus Ponens and substitution). The same holds for the set of all formulas
whose translation is computable accomplishable.

It turns out that this semantics of IPC is complete for the positive fragment of
IPC.

Theorem 2. If A is a positive formula (that is, it does not contain ⊥) and A∗

is accomplishable then A is derivable in IPC.

One of the technical tools in the proof of this theorem is the following theorem,
which was stated by Medvedev in [11] (without a complete proof) and proved
in [2]. A critical implication is a (positive) formula of intuitionistic language of
the form A1 ∧ · · · ∧Am → R, where R is an OR of variables and each Ai has the
form (Pi → Qi) → Qi. Here every Pi is an AND of variables and Qi is an OR
of variables and for all i the formulas Pi and Qi have disjoint sets of variables.
The number of variables in R, Pi and Qi is positive and may be equal to 1.

Theorem 3 ([11,2]). If a super-intuitionistic logic contains no critical impli-
cation then its positive fragment coincides with the positive fragment of IPC.
Moreover, if a positive formula A is not derivable in IPC then there is a crit-
ical implication J such that IPC 	 (A′ → J) where A′ is a formula obtained
from A by a substituting certain formulas of type OR-of-AND-of-variables for
A’s variables.

Theorem 2 does not generalise to negative formulas. We know two examples of
a formula A such that A∗ is accomplishable but A is not provable in IPC: Rose
formula from [12] and Japaridze’s formula from [7]. The latter one is simple
enough to present it here:

(¬p→ x∨y)∧(¬¬p → x∨y)→ (¬p→ x)∨(¬p → y)∨(¬¬p→ x)∨(¬¬p → y).
(1)

Here ¬B is an abbreviation for B → ⊥.
Note that if we defined the translation of A ∨ B as just A∗ � B∗ then the

translation of the axiom

(x→ r)→ ((y → r)→ (x ∨ y → r))

would not be accomplishable.

2 Japaridze’s Game Semantics and Accomplishability

2.1 Static Games

We will use a rather general notion of games from [5] between two players, called
Environment and Machine.
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A move is a string over the keyboard alphabet. A labelled move (labmove) is
a move prefixed by E or M (the prefix indicates who has done the move, Environ-
ment or Machine). A run is a finite or infinite sequence of labmoves. A position
is a finite run.

A game3 is specified by a set of runs L and a function W mapping runs to
the set {E, M}. All runs in L are called legal, all other runs are called illegal. If
W (Γ ) = P , we say that the run Γ is won by P . Otherwise it is lost by P .

The set L must have the following properties: (1) the empty sequence (called
the initial position) belongs to L and (2) if a (finite or infinite) run Γ is in L
then all its finite prefixes are in L too.

Let Γ = α1, α2, . . . be a run and αi a labmove in that run. We say that αi
is the first first illegal labmove in Γ if α1, . . . , αi−1 is legal run but α1, . . . , αi
is not. Each illegal run Γ has exactly one first illegal labmove. The function W
must have the following property: every illegal run is lost by that Player who
has made the first illegal move in it.

We have not yet defined how to play a game. It is not obvious since in some
positions both players can make a legal move and the rules do not specify who
has the turn to play in such a position.

There are eight ways to play a game. We have to make three choices: who starts
the game, how many moves (at most one or several) is Environment allowed to
make in its turn, and how many moves (at most one or several) is Machine
allowed to make in its turn. For example, the game can be played as follows:
Environment starts the play; in its turn, each player either makes a move or
passes. Another way: Machine starts the play; in its turn, Environment can
make any finite sequence of moves (including the empty sequence); in its turn,
Machine can make a move or pass. For all ways, we assume that the game lasts
infinitely long and the turn to play alternates.

For certain games it is crucial which of the eight modes to play is chosen (for
example, if W (Π) = E if Π starts with a move of E and W (Π) = M otherwise).
There are however two important classes of games, strict games and more general
static games, for which it does not matter.

A game is called strict if for every legal position Δ at most one player can
play a move α so that the resulting position Δ,α is legal.

Most games considered in the literature are strict ones. However, the operation
on games we are going to define do not look natural when applied to strict games.
They look natural when applied to another type of games (called static games)
defined in the next two paragraphs. Informally, static games are those games in
which it never hurts the player to postpone moves.

Let Γ,Δ be (finite or infinite) runs. We say that Δ is a Machine-delay of Γ if
Δ is obtained from Γ by postponing certain Machine’s moves (may be infinitely
many). Formally, the following conditions should hold. (1) Erasing all moves of
Environment in Γ and Δ results in the same run; the same holds for erasing
Machine’s moves. (2) For all k and l if kth move of Machine is made later than
lth move of Environment in Γ then so is in Δ.

3 called a constant game in [5].
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We define a notion of Environment-delay in a similar way. We say that the
game is static if the following holds for every player P , every run Γ and every
P -delay Δ of Γ . (1) If P has not made the first illegal move in Γ then P has not
made the first illegal move in Δ either. (2) If Γ is won by P then so is Δ.

We call a static game winnable if Machine has a winning strategy in the game.
It does not matter which of the above eight ways to play the game to choose:
the class of winnable games is robust under switching between the eight playing
modes. However, it is important that we do not force any player to make a
move in its turn. We call a static game computably winnable if Machine has a
computable winning strategy in the game (that is, there is a Turing machine
that wins the game).

Now we will define operations ¬,∧,∨,�,�, ?, ! on games. Those operation will
preserve static property. We will then call a formula of affine language (com-
putably) winnable if every substitution of static games for variables results in
a (computably) winnable game. One of our main result states that a formula is
(computably) winnable iff it is (computably) accomplishable.

2.2 Operations on Games

The operation of negation ¬ just swaps the roles of players: Machine plays in
Environment’s role and vice versa. The set of legal runs of ¬A is obtained from
that of A by replacing each run by its dual (a run Γ ′ is dual to Γ if it is obtained
from Γ by exchanging labels E and M in all labmoves). Machine wins a run Γ in
¬A iff the dual run Γ ′ is won by Environment in A.

The choice conjunction applied to games A,B produces the following game
A�B. Environment decides between A and B. Then the chosen game is played.
If Environment has not decided, it looses. Formally a non-empty run is legal iff
it starts with Environment’s move “choose left” of “choose right” and the rest
of the run is the legal run of A if the first move is “choose left” and is the legal
run of B if the first move is “choose right”. A legal run is won by Machine in
the following three cases: (1) it is empty, (2) the first move is “choose left” and
the rest of the run is won by Machine in the game A, and (3) the first move is
“choose right” and the rest of the run is won by Machine in the game B.

The choice disjunction A�B of A,B is dual to A�B. This time Machine has
to decide between A and B (and it looses if it has not decided). In other words,
A �B = ¬(¬A � ¬B).

Parallel disjunction ∨. In the game A∨B the players play two games A and B
simultaneously. In order to win, Machine has to win at least one game. Formally,
a run Γ is legal if the following holds. Let Γ i denote the result of removing from Γ
all the labmoves that do not have the form Pi.α (where P = E, M) and replacing
the prefix Pi.α by Pα in all the remaining labmoves. A run Γ is legal if every
its labmove has the form Pi.α (where i = 1, 2) and the runs Γ 1, Γ 2 are legal
runs of A, B, respectively. Such a run is is won by Machine if either Γ 1 is won
by Machine in A or Γ 2 is won by Machine in B (or both).

Parallel conjunction ∧ is dual to parallel disjunction. The difference is that
this time Machine has to win both games. In other words, A∧B = ¬(¬A ∨ ¬B).
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Parallel recurrence ∧| . The game ∧| A is essentially an infinite parallel conjunc-
tion A ∧ A ∧A ∧ . . . . Players play simultaneously infinite plays and in order to
win Machine has to win all plays. Formally, a run is legal if all its moves have the
form Pi.α where i = 1, 2, 3, . . . (we spell natural numbers in decimal notation,
say) and all Γ 1, Γ 2, Γ 3, . . . are legal runs of A. Such a run is won by Machine if
all Γi are won by Machine in the game A.

Parallel corecurrence ∨| is dual to parallel recurrence ∧| . Again players play
infinitely many plays in the game A. However, this time in order to win, Machine
has to win at least one play. That is, ∨|A = ¬(∧| ¬A).

All these operations preserve the static property. However not all of them
preserve strictness property. Consider, for example, the multiplicative conjunc-
tion. Assume that the games A and B are strict, the first move in A is made by
Environment and the first move in B is made by Machine. Then the first move
in A ∧B can be made by either player.

Nevertheless all eight ways to play A ∧ B are equivalent (for all strict games
A,B). So we could fix any of the eight ways to play and thus convert A ∧ B
into an equivalent strict game. However such stipulating would be quite unnat-
ural (bureaucratic, using Japaridze’s word). As a result, we would not have the
property A ∧ B = ¬(¬A ∨ ¬B). The games A ∧ B and ¬(¬A ∨ ¬B) would be
only equivalent in a sense.

Another reason to prefer static games is that all the computational problems
can be quite naturally expressed as static games and not as strict games (see [6]
for many examples). That is why Japaridze has chosen static games as a basis
for his Game semantics.

2.3 Winnable = Accomplishable

Let A(x1, . . . , xn) be a formula of affine language and G1, . . . , Gn static games.
Substituting Gi for xi in A and performing all operations spelled in A we ob-
tain a static game A(G1, . . . , Gn). Exponential AND and OR are interpreted
as ∧| , ∨| respectively. We say that a formula A is winnable, if for all static games
G1, . . . , Gn the resulting game A(G1, . . . , Gn) is winnable. We say that A is com-
putably winnable, if for all static games G1, . . . , Gn the game A(G1, . . . , Gn) is
computably winnable.

Consider also the uniform version of winnability. Call a formula A is uni-
formly (computably) winnable, if there is a (computable) strategy winning the
game A(G1, . . . , Gn) for all static games G1, . . . , Gn. We will see that winnabil-
ity coincides with accomplishability and computable winnability coincides with
computable accomplishability.

Note that in the definition of winnability we do not require the games G1, . . . ,
Gn be determined.4 Why? The class of determined games is closed under all
operations considered. And who wins the game is determined just classically:
Machine wins (i.e., it has a winning strategy in) A∧B iff it wins A and wins B,

4 The game is called determined in either Machine, or Environment has a winning
strategy in the game.



38 I. Mezhirov and N. Vereshchagin

Machine wins A ∨B if it wins A or wins B etc. Thus if we restrict the class of
static games by determined ones, a formula would be winnable iff it is a classical
tautology.

For uniform winnability and computable winnability this is not the case: for
example, it might be that Machine has a computable winning strategy in the
game A ∨ B but does not have computable winning strategy in either A or B.
Therefore for these versions of winnability it seems quite natural to restrict the
class of games to determined ones. However, it turns out that this restriction does
not affect the classes of uniformly winnable, computably winnable and uniformly
computably winnable formulas.

Theorem 4. The following three properties of a formula A are equivalent:
(1) A is computably accomplishable,
(2) A is uniformly computably winnable, and
(3) For every 2-moves5 (hence determined) static games G1, . . . , Gn the game
A(G1, . . . , Gn) is computably winnable.

The equivalence of (2) and (3) implies that every winnable formula is uniformly
computably winnable. This proves Conjecture 26.1 from [5] (a similar statement
for branching recurrences follows from Theorem 6 below).

Theorem 5. The following four properties of a formula A are equivalent:
(1) A is accomplishable.
(2) A is uniformly winnable.
(3) A is winnable.
(4) There is a Machine’s strategy winning every game of the form A(G1, . . . , Gn),
where G1, . . . , Gn are 2-moves static games.

These theorems together with Theorem 2 and Lemma 1 show that winnability
is a sound complete game theoretic semantics for the intuitionistic propositional
calculus.

Corollary 1. A positive formula is provable in IPC if and only if the formula
A∗ is computably winnable. The same holds for winnability, uniform winnability
and uniform computable winnability.

2.4 Countable Branching Recurrence

There is another way to interpret exponential connectives as operations on
games, called branching recurrence and corecurrence in [5]. There are two ver-
sions of them, countable and uncountable. Countable branching recurrence and
corecurrence were essentially introduced by Blass in [1].

The countable branching recurrence ◦|ℵ0 is the operation on games defined as
follows. In the game ◦|ℵ0A players play countably many plays in game A and
Machine has to win all plays (like in the game ∧| A). However this time its job

5 A game is a k-move game if every legal run has at most k labmoves.
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is even more difficult, as Environment may “copy” positions. Informally, we can
imagine that a position in the game ◦|ℵ0A is a tuple 〈p1, . . . , pn〉 of positions of
A. The initial position is the tuple 〈p1〉 where p1 is the initial position in A. If
the current position is 〈p1, . . . , pn〉, then each player is allowed to make a legal
move in any of the positions p1, . . . , pn. Environment is also allowed to copy any
pi, in which case the new position is equal to 〈p1, . . . , pn, pi〉.

This definition is very informal because we have defined moves in terms of
positions and not the other way around, as our framework prescribes.

Moreover, the decsribed game may be not static.6 To obtain an equivalent
static game we need to understand a copying operation as splitting one position
(the parent) into two new positions (the children). If a move made in a position
P is postponed so that at the time when it is made the position P has been
splitted, then that move is automatically played in all descendants of P . More
specifically, we assign to each position an address, which is a binary string rather
than a natural number. When a position with address w is splitted, the children
positions receive addresses w0 and w1. When a play is finished we obtain a finite
or infinite tree consisting of all addresses used. If that tree is finite then all its
leaves are addresses of the played games. If the tree is infinite then some infinite
paths (say 010101 . . . ) are not addresses of “real” plays. Only those infinite paths
are addresses of real plays which have finite number of 1s.

Formally, a run Γ is legal if it is a sequence of labmoves of the form Pw.α
and E(split w) having the following two properties. (1) For every w and every
proper prefix u of w every occurrence of a labmove of the form Pw.α or E(split
w) is preceeded by exaclty one occurence of the labmove E(split u). (2) For every
infinite string w that has only finitely many 1s consider the sequence Γ (w) of
all labmoves in Γ of the form Pu.α—with “u.” removed—where u is a prefix of
w. For each w that has only finitely many 1s the run Γ (w) must be a legal run
of A. A legal run Γ is won by Machine if Γ (w) is won by Machine for all w that
has only finitely many 1s.

In the definition of uncountable branching recurrence ◦| , we stipulate that Γ is
won be Machine if Γ (w) is won for all infinite w (and not only for w having finite
number of 1s). Thus the difference between countable and uncountable versions
is due to different understandings which plays are “real” and which are not.

Countable branching corecurrence ◦|ℵ0 is defined in the dual way so that
◦|ℵ0A = ¬(◦|ℵ0¬A).

Let us change the interpretation of ! and ? to ◦|ℵ0 and ◦|ℵ0 , respectively. We
obtain new notions of winnability and computable winnability, which does not
coincide with the old ones (and hence differ from accomplishability). Indeed, it
is not hard to see that the formula

?(¬x � ¬y) ∨ (! x � ! y),

6 Indeed, assume that the initial position is lost by Machine and every run of length
1 is won by Machine. Then the position M1.α, E(copy the first position) is won by
Machine but the position E(copy the first position), M1.α is lost.
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is not accomplishable but is uniformly computably winnable provided exponen-
tials are interpreted as countable branching recurrences.

However, Theorems 4 and 5 remain partially valid for the new notions of
winnability.

Theorem 6. The following two properties of a formula A are equivalent (if
exponentials are interpreted as countable branching recurrences):
(1) A is uniformly computably winnable, and
(2) For every 2-moves (hence determined) static games G1, . . . , Gn the game
A(G1, . . . , Gn) is computably winnable.

Theorem 7. The following three properties of a formula A are equivalent:
(1) A is uniformly winnable.
(2) A is winnable.
(3) There is a Machine’s strategy winning every game of the form A(G1, . . . , Gn),
where G1, . . . , Gn are 2-moves static games.

Corollary 1 remains true for countable branching recurrences and, moreover, in
the translation of A ∨B we may omit !. More specifically, let (xi)† = xi and

(A ∨B)† = A† �B†, (A ∧B)† = A† �B†,
(A→ B)† = ¬(!A†) ∨B† = ?(¬A†) ∨B†, ⊥† = 0.

Theorem 8. The set of all formulas A such that A† is winnable is a super-
intuitionistic logic (if exponentials are interpreted as countable branching recur-
rences). The same holds for computable winnability. On the other hand, if a
positive formula is not provable in IPC then the formula A† is not winnable and
there are 3-moves games such that the game A†(G1, . . . , Gn) is not computably
winnable.

Theorem 8 is true for the Girard’s translation as well.

2.5 Historical and Terminological Remarks

The notions of accomplishability and computable accomplishability come back
to [4]. Later they were extended to what has been termed abstract resource se-
mantics in [8]. The notions of a computably winnable and uniformly computably
winnable formula were defined in [5] under the name a (uniformly) valid formula.
The uncomputable versions of these were also considered in [5], as a property
of games rather than a property of formulas. The notion of a winnable formula
(only for countable branching recurrence) was first considered by Blass in [1] (al-
though Blass has considered only strict games and his definition of a countable
branching recurrence differs in some technical details from the above definition,
the class of winnable formulas is the same).

2.6 Uncountable Branching Recurrence

Theorem 8 is true for uncountable branching recurrence as well, which was shown
in [10]). Our proof of Theorem 8 (based on Theorem 3) also works for uncount-
able branching recurrences and provides a shorter proof than that of [10].
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3 Summary of Results

We have conidered the following four classes of formulas in the language of affine
logic:

(1) accomplishable formulas,
(2) computably accomplishable formulas,
(3) winnable formulas for parallel recurrences,
(4) computably winnable formulas for parallel recurrences,
(5) winnable formulas for countable branching recurrences,
(6) computable winnable formulas for countable branching recurrences.

We have shown that (1)=(3) and (2)=(4). It is unknown whether (1)=(2) and
(3)=(4). Both classes (1) and (2) are different from (3) and (4). All the classes
(3)–(6) coincide with their uniform versions.

It is unknown whether the classes (1)–(4) are decidable or computably enu-
merable.

Both winnability and computable winnability (both parallel and branching
versions) provide a sound semantics for the intuitionistic propositional calculus,
which is complete for its positive fragment.
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The program of research that seeks a “Natural Logic” to which the forms of
natural language are transparent has been frustrated by the existence of ambigu-
ities of scope in interpretations for multiply quantified sentences, which appear
to require grammatical operations that compromise the strong assumptions of
syntactic/semantic transparency and monotonicity made under that program.
Examples of such operations include covert movement at the level of logical form,
abstraction or storage mechanisms, and proliferating type-changing operations.

The paper examines some interactions of scope alternation with syntactic phe-
nomena including coordination, binding, and relativization. Starting from the
assumption of Fodor and Sag, and others, that many expressions that have been
treated as generalized quantifiers are in reality non-quantificational, expressions,
and using Combinatory Categorial Grammar (CCG) as a grammatical frame-
work, the paper presents an account of quantifier scope ambiguities according to
which the available readings are projected directly from the lexicon by the com-
binatorics of the syntactic derivation, without any independent manipulation of
logical form and without recourse to syntactically unmotivated type-changing
operations.

The logic that results has a number of surprising features. It makes extensive
use of (generalized) Skolem terms. The treatment of negation is unusual. The
Philonian identification of the conditional with material implication is avoided.
Some implications for natural language processing are considered.
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Abstract. In this paper we introduce a variant of alternating pushdown
automata, Synchronized Alternating Pushdown Automata, which accept
the same class of languages as those generated by conjunctive grammars.

1 Introduction

Many well known computational models support non-deterministic computa-
tions with existential acceptance conditions, thereby leading to an inherent dis-
junctive quality of the class of languages accepted. When looking at the dual
form of these models (e.g., Co-NP), universal acceptance conditions lead to con-
junction: all computations must accept. This type of acceptance is useful in such
fields as concurrent programming where all processes must meet correctness de-
mands. In this paper we explore several extensions of models for context-free
languages which combine both the notion of conjunction and of disjunction,
leading to a richer set of languages.

Conjunctive Grammars (CG) are an example of such a model. Introduced
by Okhotin in [1], CG are a generalization of context-free grammars. Explicit
intersection operations are allowed in rules thereby adding the power of conjunc-
tion. CG were shown by Okhotin to accept all finite conjunctions of context-free
languages, as well as some additional languages. However, there is no known
non-trivial technique to prove a language cannot be derived by a CG, so their
exact placing in the Chomsky hierarchy is unknown. Okhotin proved the lan-
guages generated by these grammars to be polynomially parsable [1,2], making
the model practical from a computational standpoint, and therefore of interest
for applications in various fields such as programming languages, etc. In this
paper we introduce a new model of alternating automata, Synchronized Alter-
nating Pushdown Automata (SAPDA), which is equivalent to the Conjunctive
Grammar model.1

The concept of alternating automata models was first introduced by Chan-
dra et.al. in [3]. In these models, computations alternate between existential
and universal modes of acceptance, hence their name. This behavior is achieved
1 We call two models equivalent if they accept/generate the same class of languages.

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 44–55, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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by splitting the state-set into two disjoint groups, existential states and univer-
sal states. The acceptance model dictates that all possible computations from
universal states must be accepting whereas only one must be accepting from
existential states. Thus, for a word to be accepted it must meet both disjunctive
and conjunctive conditions. In the case of Alternating Finite State Automata
and Alternating Turing Machines, the alternating models have been shown to
be equivalent in expressive power to their non-alternating counterparts, see [3].

Alternating Pushdown Automata (APDA) were also introduced in [3] and
were further explored in [4]. Like Conjunctive Grammars, APDA add the power
of conjunction over context-free languages. Therefore, unlike Finite Automata
and Turing Machines, here alternation increases the expressiveness of the model.
In fact, APDA accept exactly the exponential-time languages, see [3,4].

It is well known that Context-Free Grammars and Pushdown Automata are
equivalent, e.g., see [5, pp. 115–119]. Yet, the APDA model is stronger than the
CG model [1]. Our Synchronized Alternating Pushdown Automata are weaker
than general APDA, and accept exactly the class of languages derived by
Okhotin’s Conjunctive Grammars. Okhotin showed in [6,7] that Linear Con-
junctive Grammars, a subfamily of the Conjunctive Grammars, are equivalent
to Trellis Automata [8], however SAPDA are the first class of automata shown
to be equivalent to general CG.

The paper is organized as follows. In Section 2 we define the Conjunctive
Grammar model. In Section 3 we introduce our SAPDA model. Section 4 details
our main results, namely the equivalence of the CG and SAPDA models. Sections
5 and 6 contain discussions of mildly context-sensitive languages and related
work respectively, and Section 7 is a short conclusion of our work.

2 Conjunctive Grammars

The following definitions are taken from [1].

Definition 1. A Conjunctive Grammar is a quadruple G = (V,Σ, P, S) where:

1. V,Σ are disjoint finite sets of non-terminal and terminal symbols
respectively.

2. S ∈ V is the designated start symbol.
3. P is a finite set of rules of the form A → (α1& . . .&αn) s.t. A ∈ V and

αi ∈ (V ∪Σ)∗. If n = 1 then we write A→ α.

Definition 2. Conjunctive Formulas are defined over the alphabet V ∪ Σ ∪
{(, ),&}. The set of conjunctive formulas corresponding to a grammar G is de-
fined as follows:

1. ε is a formula.
2. Every symbol in V ∪Σ is a formula.
3. If A and B are formulas then AB is a formula.
4. If A1, . . . ,An are formulas then (A1& · · ·&An) is a formula.
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Notation. Below we use the following notation: σ, τ denote terminal symbols,
u,w, y denote terminal words, X,Y denote non-terminal symbols, α, β denote
non-terminal words, and A,B denote conjunctive formulas.

Definition 3. For every conjunctive formula A = (B1& . . .&Bn), Bis, i =
1, . . . , n, are called are called conjuncts of A,2 and A is called the enclosing
formula. If Bi contains no &-s, then Bi is a simple conjunct.

Definition 4. Given a grammar G, the relation of immediate derivability on
the set of conjunctive formulas, ⇒G, is defined as follows:

1. s1Xs2 ⇒G s1(α1& · · ·&αn)s2 for all X → (α1& · · ·&αn) ∈ P
2. s1(w& · · ·&w)s2 ⇒G s1ws2 for all w ∈ T ∗

where si ∈ (V ∪T ∪{(, ),&})∗. As usual, ⇒∗G is the reflexive transitive closure of
⇒G, and the language of a grammar G is defined as L(G) = {w ∈ T ∗|S ⇒∗G w}.
We refer to (1) as production rules and to (2) as contraction rules.

Informally, a terminal word w is derived from a formula (A1& · · ·&An) if and
only if it is derived from each Ai.

Example 1. The following conjunctive grammar derives the non-context-free
multiple-agreement language {anbncn|n ∈ N}. G = (V, T, P, S) where:

– V = {S,A,B,C,X, Y } , T = {a, b, c},
– P contains the following derivation rules:

S → (C & A)
C → Cc | X ; A→ aA | Y
X → aXb | ε ; Y → bY c | ε

The derivation of the word aabbcc is as follows:

S ⇒ (C & A)⇒ (Cc & A)⇒ (Ccc & A)⇒ (Xcc & A)
⇒ (aXbcc & A)⇒ (aaXbbcc & A)⇒ (aabbcc & A)
⇒ (aabbcc & aA)⇒ (aabbcc & aaA)⇒ (aabbcc & aaY )
⇒ (aabbcc & aabY c)⇒ (aabbcc & aabbY cc)⇒ (aabbcc & aabbcc)⇒ aabbcc

Example 2. The following linear conjunctive grammar derives the non-context-
free cross-agreement language {anbmcndm|n,m ∈ N}. G = (V, T, P, S) where:

– V = {S,A,B,C,D,X, Y } , T = {a, b, c, d},
– P contains the following derivation rules:

S → (A & D)
A → aA | X ; D → Dd | Y
X → bXd | C ; Y → aY c | B
C → cC | ε ; B → bB | ε

2 Note that this definition is different from Okhotin’s definition in [1].
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The non-terminal A derives words of the form aibmcjdm for m, i, j ∈ N, while
D derives words of the form anbicndj for n, i, j ∈ N. Therefore, the conjunction
of the two generates the cross-agreement language.

Example 3. The following linear conjunctive grammar, taken from [1] derives
the non-context-free reduplication language with a center marker {wcw | w ∈
{a, b}∗}. G = (V, T, P, S) where:

– V = {S,A,B,C,D,E} , T = {a, b, c},
– P contains the following derivation rules:

S → (C&D) ; C → aCa | aCb | bCa | bCb | c
D → (aA&aD) | (bB&bD) | cE ; A→ aAa | aAb | bAa | bAb | cEa
B → aBa | aBb | bBa | bBb | cEb ; E → aE | bE | ε

The non-terminal C verifies that the lengths of the words before and after the
c marker are equal, while D validates that the letters are the same. For a more
detailed description see [1].

2.1 Linear Conjunctive Grammars

Okhotin defines in [1] a sub-family of conjunctive grammars called Linear Con-
junctive Grammars (LCG). The definition is analogues to the definition of linear
grammars as a sub-family of context-free grammars. LCG are an interesting sub-
family of CG as they have particularly efficient parsing algorithms [6], making
them practical from a computational standpoint. Okhotin proved in [7] that
LCGs are equivalent to Trellis Automata.

Definition 5. A conjunctive grammar G = (V, T, P, S) is said to be linear if all
rules in P are of the forms:

– X → (u1Y1v1 & · · ·& unYnvn) ; ui, vi ∈ T ∗, X, Yi ∈ V
– X → w ; w ∈ T ∗, X ∈ V

The grammars presented in Examples 1, 2, 3 are all linear.

3 Synchronized Alternating Pushdown Automata

We define a class of automata called Synchronized Alternating Pushdown Au-
tomata (SAPDA) as a variation on the standard PDA model. Similarly to stan-
dard Alternating Pushdown Automata [3,4], SAPDA have both the power of
existential and universal choice.

We use a different (equivalent) definition from the existential and universal
state-sets one presented in [3]. Instead, transitions are made to a conjunction of
states. The model is non-deterministic, therefore several different conjunctions
may be possible from a given configuration. If all conjunctions are of one state
only, the automaton is a standard PDA.
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The stack memory of an SAPDA is a tree. Each leaf has a processing head
which reads the input and writes to its branch independently. When a multiple-
state conjunctive transition is applied, the stack branch splits into multiple
branches, one for each conjunct.3 The branches process the input independently,
however sibling branches must empty synchronously, after which the computa-
tion continues from the parent branch.

Definition 6. A synchronized alternating pushdown automaton is a tuple A =
(Q,Σ, Γ, δ, q0,⊥) where the domain of δ is Q × (Σ ∪ {ε}) × Γ . For every such
(q, σ,X), δ is a finite subset of

{(q1, α1) ∧ · · · ∧ (qn, αn) | qi ∈ Q, αi ∈ Γ ∗, n ∈ N} .

Everything else is defined as in the standard PDA model; Q is a finite set of
states, Γ,Σ are the stack and input alphabets respectively, q0 ∈ Q is the initial
state and ⊥ ∈ Γ is the initial stack symbol, see, e.g., [5, pp. 107–112].

We describe the current state of the automaton as a labelled tree. The tree
encodes the stack contents, the current states of the stack-branches, and the
remaining input to be read for each stack-branch. States and remaining inputs
are saved in leaves only, as these encode the stack-branches currently processed.

Definition 7. A configuration of an SAPDA is a labelled tree. Each internal
node is labelled α ∈ Γ ∗ denoting the stack-branch contents, and each leaf node
is labelled (q, w, α) where q ∈ Q denotes the current state, w ∈ Σ∗ denotes the
remaining input to be read and α ∈ Γ ∗ denotes the stack-branch contents.

For a node v in a configuration T , we denote the label of v in T by T (v). If
a configuration has a single node only, it is denoted by the label of that node.
For example, if a configuration T has a single node labelled (q, w, α) then T is
denoted by (q, w, α).

At each computation step, a transition is applied to one stack-branch. If a
branch empties, it cannot be chosen for the next transition (because it has no
top symbol). If all sibling branches are empty, and each branch emptied with
the same remaining input (i.e., after processing the same portion of the input)
and with the same state, the branches are collapsed back to the parent branch.

Definition 8. Let A be an SAPDA and let T , T ′ be two configurations of A.
We write T �A T ′ (A is omitted if understood from the context), if:

– There exists a leaf node v in T s.t. T (v) = (q, σw,Xα) and a transition
(q1, α1) ∧ · · · ∧ (qk, αk) ∈ δ(q, σ,X) s.t.:
• If k = 1 then T ′ can be obtained from T by relabelling v s.t. T ′(v) =

(q1, w, α1α).

3 This is similar to the concept of a transition from a universal state in the standard
formulation of alternating automata, as all branches must accept.
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• If k > 1 then T ′ can be obtained from T by relabelling v s.t. T ′(v) = α,
and adding k child nodes to v, v1, . . . , vk s.t. T ′(vj) = (qj , w, αj) for
j = 1, . . . , k.

– There is a node v in T s.t. T (v) = α, v has k children v1, . . . , vk s.t. all
vjs, j = 1, . . . , k, are leaves labelled with the same (p, w, ε), and T ′ can be
obtained from T by removing nodes vj and relabelling v s.t. T ′(v) = (p, w, α).

We denote by T �∗A T ′ the reflexive transitive closure of �A.

Definition 9. Let A be an SAPDA and let w ∈ Σ∗.

– An initial configuration of A on w is the configuration (q0, w,⊥).
– An accepting configuration of A is a configuration of the form (q, ε, ε).
– A computation of A on w is a series of configurations T0, . . . , Tn where T0

is the initial configuration, Ti−1 �A Ti for i = 1, . . . , n, and all leaves v of
Tn are labelled (q, ε, α), i.e., the entire input string has been read.

– An accepting computation of A on w is a computation where the final con-
figuration Tn is accepting.4

The language of A, denoted L(A), is the set of all w ∈ Σ∗ s.t. A has an
accepting computation on w.

Example 4. The SAPDA, A = (Q,Σ, Γ, δ, q0,⊥), accepts the non-context-free
language {w | #a(w) = #b(w) = #c(w)} over Σ = {a, b, c}, where Q =
{q0, q1, q2}, Γ = {⊥,⊥1,⊥2, a, b, c} and δ is defined as follows:

– δ(q0, ε,⊥) = {(q1,⊥1) ∧ (q2,⊥2)}
– δ(qi, σ,⊥i) = {(qi, σ⊥i)} , (i, σ) ∈ {1} × {a, b} ∪ {2} × {b, c}
– δ(qi, σ, σ) = {(qi, σσ)}, (i, σ) ∈ {1} × {a, b} ∪ {2} × {b, c}
– δ(q1, σj , σk) = {(q1, ε)}, (σj , σk) ∈ {(a, b), (b, a)}
– δ(q2, σj , σk) = {(q2, ε)}, (σj , σk) ∈ {(b, c), (c, b)}
– δ(qi, ε,⊥i) = {(q0, ε)}, i ∈ {1, 2}

The first step of the computation opens two branches, one for verifying that
#a = #b and one for verifying that #b = #c. If both branches manage to empty
their stack then the word is accepted.

Figure 1 shows the contents of the stack-tree at an intermediate stage of a
computation on the word abbcccabb. The left branch has read abbcc and shows
that one more b-s than a-s have been read, while the right branch has read
abbccc and shows that two more c-s than b-s have been read. Figure 2 shows the
configuration describing the state of the automaton.

4 Note that this is acceptance by empty stack. It is possible to define acceptance by
accepting states. Let F ⊆ Q be a set of accepting states. An accepting configuration
is of the form (q, ε, α) where q ∈ F . Both models of acceptance are equivalent.
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1

b

(q
1
,abbcc caab)

c
c

(q
2
,abbccc aab)

2

Fig. 1. Intermediate state of a computation
on abbcccaab

(q1,caab,b    )1

(q2,aab,cc    )2

Fig. 2. The configuration matching the
state in Fig. 1

4 Main Results

In this section we state the main results of our paper, namely that the SAPDA
and CG models are equivalent.

Theorem 1. If a language is generated by a CG then it is accepted by a SAPDA.

Theorem 2. If a language is accepted by an SAPDA then it is generated by
a CG.

The proofs of Theorems 1 and 2 are extensions of the classical ones,5 see, e.g.,
[5, Theorem 5.3, pp. 115–116] and [5, Theorem 5.4, pp. 116–119] respectively.
Both proofs are omitted due to lack of space.

5 Mildly Context-Sensitive Languages

The field of computational linguistics focuses on defining a computational model
for natural languages. Originally, context-free languages were considered, and
many natural language models are in fact models for context-free languages.
However, certain natural language structures that cannot be expressed in context
free languages, led to an interest in a slightly wider class of languages which came
to be known as mildly context-sensitive languages (MCSL). Several formalisms
for grammar specification are known to converge to this class [9].

Mildly context sensitive languages are loosely categorized as having the fol-
lowing properties: (1) They contain the context-free languages; (2) They con-
tain such languages as multiple-agreement, cross-agreement and reduplication;
(3) They are polynomially parsable; (4) They are semi-linear6. It is clear that
there is a strong relation between the class of languages derived by conjunctive
grammars (and accepted by SAPDA) and the class of mildly context sensitive
languages. The first criterion of MCSL is obviously met, as both CG and SAPDA
5 The proof of Theorem 1 is more involved, and requires several preliminary steps.
6 A language L is semi-linear if {|w| | w ∈ L} is a finite union of sets of integers of

the form {l + im | i = 0, 1, . . .}, l, m ≥ 0.
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contain their context free counterparts, CFG and PDA respectively. The third
criterion is also met by Okhotin’s proof that CG membership is polynomial.

Multiple-agreement and cross-agreement are covered as shown in Examples
1, 2 respectively. Reduplication with a center marker is shown in Example 3.
Okhotin has conjectured that reduplication without a center marker cannot be
generated by any CG. However, this is still an open problem.

Surprisingly, it is the fourth criterion of semi-linearity which is not met, as
demonstrated by the following example due to Okhotin [10].

Example 5. The following linear conjunctive grammar derives the non-context-
free language {ba2ba4 · · · ba2n

b|n ∈ N}. G = (V, T, P, S) where:

– V = {S,A,B,C,D,U, V } , T = {a, b},
– P contains the following derivation rules:

S → (U & V ) | b
U → Ua | Ub | b ; V → Ab | (B & D)
A → aA | a ; B → Ba | Bb | Cb
C → aCa | baa ; D → aD | bV

For more details regarding this example see [10].

The language generated in Example 5 has super-linear growth, which means
that, in this respect, CG and SAPDA accept some languages not characterized
as mildly context-sensitive. In this respect, it may be that the CG and SAPDA
models are too strong for natural language processing.

6 Related Work

6.1 Alternating Grammars

Moriya introduced in [11] the concept of Alternating Context-Free Grammars
(ACFG), as a suggested grammatization for APDA. In ACFG, when a conjunc-
tive rule is applied in a derivation, the currently derived formula is duplicated,
and each duplicate continues its derivation independently. Therefore, a deriva-
tion of a grammar is in fact a tree where a conjunctive rule with k conjuncts
yields k child nodes in the derivation tree. The root of the derivation tree is
always labelled with the start symbol S. If all leaves of a derivation tree are
labelled w then the tree is a derivation of w.

The difference between Moriya’s ACFGs and Okhotin’s CGs is that conjunc-
tions in CGs are local leaving the rest of the thus far derived formula untouched
whereas in ACFGs, when a conjunctive rule is applied, the entire formula is du-
plicated. It is the locality of conjunctions in CGs which renders them so similar
in many respects to context-free grammars.

In [11], Moriya claimed that ACFG are equivalent to APDA. However, Ibarra
et.al. showed in [12] that the equivalence proof was flawed. Namely, the proof
was based on the claim that leftmost derivations of ACFGs are equivalent to
general derivations. This claim, however, is surprisingly false. The question of



52 T. Aizikowitz and M. Kaminski

whether ACFG and APDA are equivalent remains an open one. It would seem
that ACFG are stronger than CGs (as APDAs are stronger than SAPDAs) but
this too has yet to be proven. Possibly the introduction of an automata model
for CG can help solve some of these questions.

6.2 Conjunction in Lambek Categorial Grammars

Categorial Grammar is a formal system for analyzing the syntax and semantics of
both formal and natural languages. Categorial grammars contain only a small set
of universal rules, which are applicable to all languages; the differences between
languages stemming solely from the lexicon. The universal rules of categorial
grammars are treated as a logical calculus. Therefore, the syntactic analysis of
an expression is reduced to a logical derivation. For more information see [13].

There are several frameworks for categorial grammars, each defining a set of
universal derivation rules. One of the most widely accepted is the (associative)
Lambek-calculus (L) as defined in [14]. Figure 3 shows the calculus, where Γ
(Γi) denotes a finite sequence of categories, and c (ci) denotes a single category.
The expression Γ 
 c is understood as: Γ is reducible to c in the given calculus.

(Ax) c � c

Γ1 � c1 Γ2 c2 Γ3 � c3
(→ L)

Γ2 Γ1 (c1 → c2) Γ3 � c3

c1 Γ � c2
(→ R)

Γ � (c1 → c2)

Γ1 � c1 Γ2 c2 Γ3 � c3
(← L)

Γ2 (c2 ← c1) Γ1 Γ3 � c3

Γ c1 � c2
(← R)

Γ � (c2 ← c1)

Fig. 3. Lambek Calculus – Sequent calculus style

Definition 10. A Lambek categorial grammar is a tuple G = (Σ,B, c0, α)
where:

– Σ is a finite set, the alphabet
– B is a set of basic categories with an associated category system C (the

reflexive-transitive closure of B under → and ←)
– c0 is the target category
– α : Σ −→ Pf (C) is the lexicon, a mapping assigning each terminal symbol

in Σ a finite non-empty subset of categories from C
The language generated by G is defined to be:

L(G) = {w = σ1 . . . σn ∈ Σ+ |∃c1 . . . cn : ci ∈ α[σi], i = 1 . . . n,�L c1 . . . cn 
 c0}

Lambek categorial grammars have been proven to derive exactly the class of
context free languages, see [15,16,17]. However, as context-free languages do not
cover all natural language structures, several extensions have been explored. One
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Γ1 c1 Γ2 � c3
(∩ L1)

Γ1 c1 ∩ c2 Γ2 � c3

Γ1 c1 Γ2 � c3
(∩ L2)

Γ1 c2 ∩ c1 Γ2 � c3

Γ � c1 Γ � c2
(∩ R)

Γ � c1 ∩ c2

Fig. 4. Kanazawa’s intersective conjunction rules

such extension is Kanazawa’s work [18] in which he suggests an enrichment of
the Lambek calculus with intersective conjunction (see Fig. 4).

Similarly to CG, Kanazawa’s grammars accept all finite intersections of
context-free languages, e.g., the multiple-agreement and cross-agreement lan-
guages etc. Kanazawa also shows that his extended grammars accept languages
not obtained as a finite intersection of context-free languages by proving that
they can accept the langauge L = {a2n2 | n ∈ N}.7 This is a super-linear lan-
guage, similarly to the CG generated language from Example 5.

It would be interesting to compare Kanazawa’s model to CG and SAPDA as
there seem to be many similarities between them. Categorial grammars are used
mainly in the field of computational linguistics, so such a comparison could have
a bearing on natural language processing as well as formal language theory.

7 Concluding Remarks

We have introduced a synchronized model of Alternating Pushdown Automata,
SAPDA, which is equivalent to the CG model. As the exact class of languages
generated by CG-s is not yet known, the exact class of languages accepted by
SAPDA is not known either. Perhaps the formalization as an automaton will
help find methods to prove that languages are not accepted by the model, thus
answering some open questions.

An interesting direction for further research is the exploration of the relation
between LCG and SAPDA. It is a well known result, due to Ginsberg and Spanier
[19], that linear grammars are equivalent to 1turn-PDA. 1turn-PDA are a sub-
family of PDA where in each computation the stack hight switches only once from
non-decreasing to decreasing. A similar notion of 1turn-SAPDA can be defined,
where each stack branch can make only one turn in the course of a computa-
tion. Our initial results point towards an equivalence between 1turn-SAPDA and
LCG. If this equivalence holds, it will deepen the correlation between SAPDA
and CG, strengthening the claim that SAPDA are a natural model for CG.

In [20], Kutrib and Malcher explore a wide range of finite-turn automata
with and without turn conditions, and their relationships with closures of linear
context-free languages under regular operations. It would also prove interesting
to explore the general case of finite-turn SAPDA, perhaps finding models for
closures of linear conjunctive languages under regular operations.

7 L is not a finite intersection of context-free languages, as all unary context-free
languages are regular, and regular languages are closed under intersection [18].
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Abstract. Taking as inspiration the hybrid logic HL(↓), we introduce a
new family of logics that we call memory logics. In this article we present
in detail two interesting members of this family defining their formal
syntax and semantics. We then introduce a proper notion of bisimula-
tion and investigate their expressive power (in comparison with modal
and hybrid logics). We will prove that in terms of expressive power, the
memory logics we discuss in this paper are more expressive than ortho-
dox modal logic, but less expressive than HL(↓). We also establish the
undecidability of their satisfiability problems.

1 Memory Logics: Hybrid Logics with a Twist

Hybrid languages have been extensively investigated in the past years. HL, the
simplest hybrid language, is usually presented as the basic modal language K
extended with special symbols (called nominals) to name individual states in a
model. These new symbols are simply a new sort of atomic symbols {i, j, k, . . .}
disjoint from the set of standard propositional variables. While they behave
syntactically exactly as propositional variables do, their semantic interpretation
differ: nominals denote elements in the model, instead of sets of elements. This
simple addition already results in increased expressive power. For example the
formula i ∧ 〈r〉i is true in a state w, only if w is a reflexive point named by the
nominal i. As the basic modal language is invariant under unraveling, there is
no equivalent modal formula [1].

But as we said above,HL is just the simplest hybrid language. Once nominals
have been added to the language, other natural extensions arise. Having names
for states at our disposal we can introduce, for each nominal i, an operator @i

that allows us to jump to the point named by i obtaining the language HL(@).
The formula @iϕ (read ‘at i, ϕ’) moves the point of evaluation to the state
named by i and evaluates ϕ there. Intuitively, the @i operators internalize the
satisfaction relation ‘|=’ into the logical language: M, w |= ϕ iff M |= @iϕ,
where i is a nominal naming w. For this reason, these operators are usually
called satisfaction operators.
� S. Mera is partially supported by a grant of Fundación YPF.
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If nominals are names for individual states, why not introduce also binders.
We would then be able to write formulas like ∀i.〈r〉i, which will be true at a state
w if it is related to all states in the domain. The ∀ quantifier is very expressive:
the satisfiability problem of HL(∀) (HL extended with the universal binder ∀) is
undecidable [2]. Moreover, HL(@, ∀) is expressively equivalent to full first-order
logic (over the appropriate signature).

From a modal perspective, other binders besides ∀ are possible. The ↓ binder
binds nominals to the current point of evaluation. In essence, it enables us to
create a name for the here-and-now, and refer to it later in the formula. For
example, the formula ↓i.〈r〉i is true at a state w if and only if it is related to itself.
The intuitive reading is quite straightforward: the formula says “call the current
state i and check that i is reachable”. The logic HL(↓) is also very expressive
but weaker than HL(∀). Sadly, its satisfiability problem is also undecidable.

Different binders for hybrid logics have been investigated in detail (see [2]),
but in this article we want to take a look at ↓ from a slightly different perspective:
we will consider nominals and ↓ as ways for storing and retrieving information
in the model.

Models as Information Storage. We should note that nominals and ↓ work nicely
together. Whereas ↓i stores the current point of evaluation in the nominal i, nom-
inals act as checkpoints enabling us to retrieve stored information by verifying if
the current point is named by a given nominal i. To make this point clear, let’s
define formally the semantics of HL(↓).
Definition 1. A hybrid signature S is a tuple 〈prop,rel,nom〉 where prop,
rel, nom are mutually disjoint infinite enumerable sets (the sets of propositional
symbols, relational symbols and nominals, respectively).

Formulas of HL(↓) are defined over a given S by the following rules

forms ::= p | i | ¬ϕ | ϕ1 ∧ ϕ2 | 〈r〉ϕ | ↓i.ϕ,
where p ∈ prop, i ∈ nom, r ∈ rel and ϕ,ϕ1, ϕ2 ∈ forms. Formulas in which
any nominal i appears in the scope of a binder ↓i are called sentences.

A model for HL(↓) over a signature S is a tuple 〈W, (Rr)r∈rel, V, g〉 where
〈W, (Rr)r∈rel, V 〉 is a standard Kripke model (i.e., W is a non empty set, each
Rr is a binary relation over W , and V is a valuation), and g is an assignment
function from nom to W .

Given a model M = 〈W, (Rr)r∈rel, V, g〉 the semantic conditions for the
propositional and modal operators are defined as usual (see [1]), and in addition:

〈W, (Rr)r∈rel, V, g〉, w |= i iff g(i) = w
〈W, (Rr)r∈rel, V, g〉, w |= ↓i.ϕ iff 〈W, (Rr)r∈rel, V, g

i
w〉, w |= ϕ

where giw is the assignment identical to g
except perhaps in that giw(i) = w.

We can think that ↓i is modifying the model (by storing the current point of
evaluation into i), and that i is being evaluated in the modified model. We can
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see the assignment g as a particular type of ‘information storage’ in our model,
and consider ↓ and i as our way to access this information storage for reading
and writing.

But let us take a step back and consider the new picture. When we introduced
the ↓ binder, our main aim was to define a binder which was weaker than the
first-order quantifier. We thought of the semantics of ↓ first, and we suitably
adjusted the way we updated the assignment later. But why do we need to
restrict ourselves to binders and assignments?

Let us start with a standard Kripke models 〈W, (Rr)r∈rel, V 〉, and let us
consider a very simple addition: just a set S ⊆ W . We can, for example, think
of S as a set of states that are, for some reason, ‘known’ to us. Already in this
very simple set up we can define the following operators

〈W, (Rr)r∈rel, V, S〉, w |=©rϕ iff 〈W, (Rr)r∈rel, V, S ∪ {w}〉, w |= ϕ
〈W, (Rr)r∈rel, V, S〉, w |=©k iff w ∈ S.

As it is clear from the semantic definition, the ‘remember’ operator©r (a unary
modality) just marks the current state as being ‘already visited’, by storing it
in our ‘memory’ S. On the other hand, the zero-ary operator ©k (for ‘known’)
queries S to check if the current state has already been visited.

In this simple language we would have that 〈W, (Rr)r∈rel, V, ∅〉, w |=©r 〈r〉©k
will be true only if w is reflexive. Is this new logic equivalent to HL(↓)? As we
will prove in this article, the answer is negative: the new language is less expres-
sive than HL(↓) but more expressive than K. Intuitively, in the new language
we cannot discern between states stored in S, while an assignment g keeps a
complete mapping between states and nominals.

Naturally, we can include structures which are richer than a simple set, in our
models. Let us consider one example. Let S be now a stack of elements that we
will represent as a list that ‘grows to the right’ (we will denote the act of pushing
w in S as S · w). Let us define the operators:

〈W, (Rr)r∈rel, V, S〉, w |= (push)ϕ iff 〈W, (Rr)r∈rel, V, S · w〉, w |= ϕ
〈W, (Rr)r∈rel, V, S · w′〉, w |= (pop)ϕ iff 〈W, (Rr)r∈rel, V, S〉, w |= ϕ
〈W, (Rr)r∈rel, V, []〉, w |= (pop)ϕ never
〈W, (Rr)r∈rel, V, S · w′〉, w |= top iff w = w′.

We will call this new family of logics memory logics (M) and in this article
we will focus on M(©r ,©k ), i.e., the logic K extended with the operators ©r and
©k introduced above, and investigate two possible variations.

More generally, our proposal is to take seriously the usual saying that ‘modal
languages are languages to talk about labeled graphs’ but give us the freedom to
choose what we want to ‘remember’ about a given graph and how we are going
to store it.

To close this section, we formally define the syntax and semantics of the logics
we will investigate in the rest of the article.

Syntax and semantics for M(©r ,©k ). Syntactically, we obtain M(©r ,©k ) by ex-
tending the basic modal language K with the ©r and ©k modalities.
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Definition 2 (Syntax). Let prop = {p1, p2, . . .} (the propositional symbols)
and rel = {r1, r2, . . .} (the relational symbols) be pairwise disjoint, countable
infinite sets of symbols. The set forms of formulas ofM(©r ,©k ) in the signature
〈prop,rel〉 is defined as:

forms ::= p | ©k | ¬ϕ | ϕ1 ∧ ϕ2 | 〈r〉ϕ | ©rϕ,
where p ∈ prop, r ∈ rel and ϕ,ϕ1, ϕ2 ∈ forms.

While the syntax of the logics that we will discuss in this article is the same,
they differ subtly in their semantics.

Definition 3 (Semantics). Given a signature S = 〈prop,rel〉, a model for
M(©r ,©k ) is a tuple 〈W, (Rr)r∈rel, V, S〉, where 〈W, (Rr)r∈rel, V 〉 is a standard
Kripke model and S ⊆W . The semantics is defined as:

〈W, (Rr)r∈rel, V, S〉, w |= p iff w ∈ V (p)
〈W, (Rr)r∈rel, V, S〉, w |= ¬ϕ iff 〈W, (Rr)r∈rel, V, S〉, w �|= ϕ

〈W, (Rr)r∈rel, V, S〉, w |= ϕ ∧ ψ iff 〈W, (Rr)r∈rel, V, S〉, w |= ϕ
and 〈W, (Rr)r∈rel, V, S〉, w |= ψ

〈W, (Rr)r∈rel, V, S〉, w |= 〈r〉ϕ iff there is w′ such that Rr(w,w′)
and 〈W, (Rr)r∈rel, V, S〉, w′ |= ϕ

〈W, (Rr)r∈rel, V, S〉, w |=©rϕ iff 〈W, (Rr)r∈rel, V, S ∪ {w}〉, w |= ϕ
〈W, (Rr)r∈rel, V, S〉, w |=©k iff w ∈ S

In this paper, we will be especially interested in the case where formulas are
evaluated in models with no previously ‘remembered’ states, that is, the case
where S = ∅. We will call M∅(©r ,©k ) the logic that results from restricting the
class of models to those with S = ∅.

2 Bisimulation

Here we will define a proper notion of bisimulation forM(©r ,©k ) andM∅(©r ,©k ),
and use it to investigate their expressive power. We will use a presentation in
terms of Ehrenfeucht games [3], but a relational presentation is also possible.

We start with some notation. Given M = 〈W, (Rr)r∈rel, V, S〉 and states
w1, . . . , wn, we defineM[w1, . . . , wn] = 〈W, (Rr)r∈rel, V, S∪{w1, . . . , wn}〉. The
set of propositions that are true at a given state w is defined as props(w) =
{p ∈ prop | w ∈ V (p)}. Given two models M = 〈W, (Rr)r∈rel, V, S〉 and
M′ = 〈W ′, (R′r)r∈rel, V

′, S′〉, and states w ∈W and w′ ∈ W ′, we say that they
agree if props(w) = props(w′) and w ∈ S iff w′ ∈ S′.

Bisimulation Games for M(©r ,©k ). Let S = 〈prop,rel〉 be a standard modal
signature. LetM1 = 〈W1, (R1

r)r∈rel, V1, S1〉 andM2 = 〈W2, (R2
r)r∈rel, V2, S2〉

be models and let w1 ∈ W1 and w2 ∈ W2 be agreeing states. We define the
Ehrenfeucht game E(M1,M2, w1, w2) as follows. There are two players called
Spoiler and Duplicator. In a play of the game, the players move alternatively.
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Spoiler always makes the first move. At every move, Spoiler starts by choosing
in which model he will make a move. Let us set s = 1 and d = 2 in case he
choosesM1; otherwise, let s = 2 and d = 1. He can then either:

1. Make a memorizing step. I.e., he extends Ss to Ss ∪ {ws}. The game then
continues with E(M1[w1],M2[w2], w1, w2).

2. Make a move step. I.e., he chooses r ∈ rel, and vs, an Rsr-successor of ws. If
ws has no Rsr-successors, then Duplicator wins. Duplicator has to chose vd,
an Rdr-successor of wd, such that vs and vd agree. If there is no such successor,
Spoiler wins. Otherwise the game continues with E(M1,M2, v1, v2).

In the case of an infinite game, Duplicator wins. Note that with this definition,
exactly one of Spoiler or Duplicator wins each game.

Definition 4 (Bisimulation). We say that two modelsM1 andM2 are bisim-
ilar (and we write M1↔M2) when there exist w1 ∈ M1 and w2 ∈ M2 such
that they agree and Duplicator has a winning strategy on E(M1,M2, w1, w2).
In this case we also say that w1 and w2 are bisimilar (M1, w1↔M2, w2).

We are now ready to prove that the notion of bisimulation we just introduced is
adequate. We will show that formulas of M(©r ,©k ) are preserved under
bisimulation.

Definition 5 (Logic equivalence). Given M1,M2 two models, w1 ∈ M1,
w2 ∈ M2, we say that w1 is equivalent (for some logic L) to w2 (w1 � w2) if
for all ϕ (in L) we have M1, w1 |= ϕ iff M2, w2 |= ϕ.

Theorem 1. Let M1,M2 be two models, w1 ∈ M1, w2 ∈ M2. If w1↔w2 then
w1 � w2.

Proof. We prove that if w1 and w2 agree and Duplicator has a winning strategy
on E(M1,M2, w1, w2) then ∀ϕ ∈ M(©r ,©k ),M1, w1 |= ϕ iff M2, w2 |= ϕ. We
proceed by induction on ϕ.

– The propositional and boolean cases are trivial.
– ϕ =©k . This case follows from Definition 3 and because w1 and w2 agree.
– ϕ = 〈r〉ψ. This is the standard modal case. Preservation is ensured thanks

to the move steps in the definition of the game.
– ϕ = ©rψ. We prove that M1, w1 |= ©rψ implies M2, w2 |= ©rψ. Suppose
M1, w1 |=©rψ then M1[w1], w1 |= ψ. The following claim is clear.

Claim. Let M1,M2 be two models, w1 ∈ M1, w2 ∈ M2. If Duplicator has
a winning strategy on E(M1,M2, w1, w2) then he has a winning strategy
on E(M1[w1],M2[w2], w1, w2).

By this claim, Duplicator has a winning strategy on E(M1[w1],M2[w2], w1,
w2). Applying inductive hypothesis and the fact that M1[w1], w1 |= ψ, we
conclude M2[w2], w2 |= ψ and then M2, w2 |= ©rψ. The other direction is
identical.
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This concludes the proof.

The converse of Theorem 1 holds for image-finite models (i.e., models in which
the set of successors of any state in the domain is finite). The proof is exactly the
same as for K, as©r and©k do not interact with the accessibility relation [1].

Theorem 2 (Hennessy-Milner Theorem). Let M1 and M2 be two image
finite models. Then for every w1 ∈M1 and w2 ∈M2, w1 � w2 then w1↔w2.

Clearly, as Theorems 1 and 2 hold for arbitrary models, the results hold also for
M∅(©r ,©k ).

3 Expressivity

In this section we compare the expressive power of memory logics with respect
to both the modal and hybrid logics. But comparing the expressive power of
these logics poses a complication because, strictly speaking, each of them uses a
different class of models. We would like to be able to define a natural mapping
between models of each logic, similar to the natural mapping that exists between
Kripke models and first-order models [1].

Such a mapping is easy to define in the case ofM∅(©r ,©k ): each Kripke model
〈W, (Rr)r∈rel, V 〉 can be identified with the M∅(©r ,©k ) model 〈W, (Rr)r∈rel,
V, ∅〉. Similarly, for formulas which are sentences, the M∅(©r ,©k ) model 〈W,
(Rr)r∈rel, V, ∅〉 can be identified with the hybrid model 〈W, (Rr)r∈rel, V, g〉
(for g arbitrary). As we will discuss below, it is harder to find such a natural
way to transform models for the case ofM(©r ,©k ): the most natural way seems
to involve a shift in the signature of the language.

Definition 6 (L ≤ L′). We say that L is not more expressive than L′ (notation
L ≤ L′) if it is possible to define a function Tr between formulas of L and L′
such that for every model M and every formula ϕ of L we have that

M |=L ϕ iff M |=L′ Tr(ϕ).

We say that L is strictly less expressive than L′ (notation L < L′) if L ≤ L′
but not L′ ≤ L.

K is strictly less expressive than M∅(©r ,©k ). It is easy to see intuitively that ©r
and ©k do bring additional expressive power into the language: with their help
we can detect cycles in a given model, while formulas of K are invariant under
unraveling.

Showing that K ≤ M∅(©r ,©k ) is straightforward as K is a sublanguage of
M∅(©r ,©k ). Hence, we can take Tr to be the identity function.

Theorem 3. K ≤M∅(©r ,©k ).

Proving that M∅(©r ,©k ) is strictly more expressive is only slightly harder.
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Theorem 4. K �=M∅(©r ,©k )

Proof. LetM1 = 〈{w}, {(w,w)}, ∅〉 andM2 = 〈{u, v}, {(u, v), (v, u)}, ∅〉 be two
Kripke models. It is known that they are K bisimilar (see [1]). On the other
hand, the equivalent M(©r ,©k ) models are distinguishable by ϕ =©r 〈r〉©k .

M∅(©r ,©k ) is strictly less expressive than HL(↓). We will define a translation
that maps formulas ofM∅(©r ,©k ) into sentences of HL(↓). Intuitively, it is clear
that we can use ↓ to simulate©r , but©k does not distinguishes between different
memorized states (while nominals binded by ↓ do distinguish them). We can
solve this using disjunction to gather together all previously remembered states.

Theorem 5. M∅(©r ,©k ) ≤ HL(↓).
Proof. See the technical appendix.

Finally we arrive to the most interesting question in this section: as we already
mentioned, M∅(©r ,©k ) seems to be weaker than HL(↓) because it allows us to
remember that we have already visited a given state, but we cannot distinguish
among different visited states. Indeed, we can prove that M∅(©r ,©k ) is strictly
less expressive than HL(↓), but the proof is slightly involved.

Theorem 6. M∅(©r ,©k ) �= HL(↓).
Proof. LetM1 = 〈ω,R1, ∅, ∅〉 andM2 = 〈ω,R2, ∅, ∅〉, where R1 = {(n,m) | n �=
m}∪ {(0, 0)} and R2 = {(n,m) | n �= m} ∪ {(0, 0), (1, 1)} (the models are shown
in Figure 1, the accessibility relation is the non-reflexive transitive closure of the
arrows shown in the picture).

We prove that M1, 0↔M2, 0 showing the winning strategy for duplicator.
Intuitively, the strategy for Duplicator consists in the following idea: whenever
one player is in (M1, 0) the other will be in (M2, 0) or (M2, 1), and conversely
whenever a player is in (M1, n), n > 0 the other will be in (M2,m), m > 1.
This is maintained until Spoiler (if ever) decides to remember a state. Once this
is done, then any strategy will be a winning one for Duplicator.

Being a bit more formal, the winning strategy will have two stages. While
Spoiler does not remember any reflexive state, Duplicator plays with the follow-
ing strategy: if Spoiler chooses 0 in any model, Duplicator chooses 0 in the other

Fig. 1. Two M∅(©r , ©k )-bisimilar models
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one; if Spoiler chooses n > 0 in M1, Duplicator plays n + 1 in M2; if Spoiler
chooses n > 0 in M2, Duplicator plays n− 1 in M1.

Notice that with this strategy Spoiler chooses a reflexive state if and only if
Duplicator answers with a reflexive one. This is clearly a winning strategy. If
ever Spoiler decides to remember a reflexive state, Duplicator starts using the
following strategy: if Spoiler selects a state n, Duplicator answers with an agree-
ing state m of the opposite model. Notice that this is always possible since both
n and m see infinitely many non remembered states and at least one remembered
state. Therefore M1, w↔M2, w.

On the other hand, let ϕ be the formula ↓i.〈r〉(i∧ 〈r〉(¬i∧ ↓i.〈r〉i)). It is easy
to see that M1, w �|= ϕ but M2, w |= ϕ.

The basic idea behind the previous proof is that if the relationsR1 andR2 extend
the set {(n,m) | n �= m}, thenM∅(©r ,©k ) can distinguish between irreflexive and
non irreflexive frames, but it cannot distinguish frames with a different number
of reflexive nodes.

There is a number of interesting remarks to be made above the previous proof.
First, notice that it is essential for the winning strategy of Duplicator that each
state in a model is related to infinitely many others. The question of whether
M∅(©r ,©k ) < HL(↓) on image-finite models is still open. Second, notice that the
HL(↓) sentence that we used in the proof uses only one nominal. Hence, we have
actually proved that HL1(↓) �≤ M∅(©r ,©k ), where HL1(↓) is HL(↓) restricted
to only one nominal. But actually, it is also the case thatM∅(©r ,©k ) �≤ HL1(↓).
Proposition 1. The logics HL1(↓) and M∅(©r ,©k ) are incomparable in terms
of expressive power.

Proof. See technical appendix.

Actually, this incomparability result can be extended to HL(↓) restricted to any
fixed number of nominals, by taking cliques of the appropriate size.

Theorem 7. For any fixed k, the logics HLk(↓) and M∅(©r ,©k ) are incompa-
rable in terms of expressive power.

We will now briefly discuss the case of M(©r ,©k ). As we already mentioned at
the beginning of this section, the first required step to compare expressivity is
to be able to define a natural mapping between models of the different logics
involved. Consider a model 〈W, (Rr)r∈rel, V, S〉 for M(©r ,©k ); if we want to
associate a Kripke model we have to decide how to deal with the set S. The only
natural choice seems to be to extend the signature with a special propositional
variable known, and let V ′ be identical to V excepts that V ′(known) = S. And
the same can be done to obtain a hybrid model from a M(©r ,©k ) model.

Theorem 8. The following results concerning expressive power can be
established

1. K over the signature 〈prop ∪ {known},rel〉 is strictly less expressive than
M(©r ,©k ) over the signature 〈prop,rel〉.
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2. M(©r ,©k ) over the signature 〈prop,rel〉 is strictly less expressive than
HL(↓) over the signature 〈prop ∪ {known},rel,nom〉.

3. M∅(©r ,©k ) over the signature 〈prop ∪ {known},rel〉 is equivalent to
M(©r ,©k ) over the signature 〈prop,rel〉

Proof. See technical appendix for details.

To close this section, we mention that the satisfaction preserving translations
defined in the proof can actually be used to transfer known results, for example,
from HL(↓) toM(©r ,©k ) andM∅(©r ,©k ). For instance, both logics are compact
and their formulas are preserved by generated submodels (see [4]).

4 Infinite Models and Undecidability

The last issue that we will discuss in this paper is the undecidability of the satis-
fiability problem for bothM(©r ,©k ) andM∅(©r ,©k ). The proof is an adaptation
of the proof of undecidability of HL(↓) presented in [2].

We first prove that both languages lack the finite model property [1].

Theorem 9. There is a formula Inf ∈ M∅(©r ,©k ) such thatM, w |= Inf implies
that the domain of M is an infinite set.

Proof. The formula Inf states that there is a nonempty subset of W that is an
unbounded strict partial order. See the technical appendix for details.

To prove failure of the finite model property for the caseM(©r ,©k ) we first notice
that the following lemma is easy to establish (we only state it for the monomodal
case; a similar result is true in the multimodal case). Failure of the finite model
property is then a direct consequence.

Lemma 1. Let ϕ be a formula of modal depth d. If 〈W,Rr, V, S〉, w |=(∧d
i=0[r]i¬©k

)
∧ ϕ then 〈W,Rr, V, ∅〉, w |= ϕ.

Corollary 1. M(©r ,©k ) lacks the finite model property.

Proof. Using Lemma 1, one can easily see that the formula Inf∧
(∧4

i=0[r]i¬©k
)

,
where Inf is the one in the proof of Theorem 9, forces an infinite model.

We now turn to undecidability. We show that M(©r ,©k ) and M∅(©r ,©k ) are
undecidable by encoding the ω × ω tiling problem (see [5]). Following the idea
in [2], we construct a spy point over the relation S which has access to every
tile. The relations U and R represent moving up and to the right, respectively,
from one tile to the other. We code each type of tile with a fixed propositional
symbol ti. With this encoding we define for each tiling problem T , a formula ϕT

such that the set of tiles T tiles ω × ω iff ϕT has a model.

Theorem 10. The satisfiability problem for M∅(©r ,©k ) is undecidable.
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Proof. See the technical appendix for details.

Corollary 2. The satisfiability problem for M(©r ,©k ) is undecidable.

Proof. Using Lemma 1 and the formula ϕT in Theorem 10, we obtain a formula
ψ such that if M, w |= ψ then M is a tiling of ω × ω. For the converse, we can
build exactly the same model as in the above proof.

5 Conclusions and Further Work

In this paper we investigate two members of a family of logics that we called
memory logics. These logics were inspired by the hybrid logic HL(↓): the ↓ oper-
ator can be thought of as a storage command, and our aim is to carry this idea
further investigating different ways in which information can be stored. We have
proved that, in terms of expressive power, the memory logics M(©r ,©k ) and
M∅(©r ,©k ) lay between the basic modal logic K and the hybrid logic HL(↓).
Unluckily, the reduced expressive power is not sufficient to ensure good compu-
tational behavior: both M(©r ,©k ) and M∅(©r ,©k ) fail to have the finite model
property and moreover their satisfiability problems are undecidable.

Despite the negative result concerning decidability, we believe that the new
perspective we pursue in this paper is appealing. Clearly, it opens up the way to
many new interesting modal languages (we discuss some examples in Sect. 1).
As in the case of modal and hybrid languages, all of them seem to share some
common behavior, and the challenge is now to discover and understand it.

Much work rest to be done. We are currently working on complete axiomati-
zations of M(©r ,©k ) and M∅(©r ,©k ), and on model theoretic characterizations.
Extending the language with nominals is a natural step, and then adapting the
internalized hybrid tableau method [6] to the new languages is straightforward.
More interesting is to explore new languages of the family (like (push), (pop), or
(forget)), and interaction between the memory operators and the modalities.

For example, if we restrict the class of models to those in which we are forced
to memorize the current state each time we take a step via the accessibility
relation, then the logic turns decidable (even though it is still strictly more
expressive than K). More precisely, changing the semantic definition of 〈r〉 to be

〈W, (Rr)r∈rel, V, S〉, w |= 〈r〉ϕ iff ∃w′ ∈W,Rr(w,w′) and
〈W, (Rr)r∈rel, V, S ∪ {w}〉, w′ |= ϕ

and calling the resulting logic M−(©r ,©k ), then K <M−(©r ,©k ) <M(©r ,©k ).
Moreover, M−(©r ,©k ) has the bounded tree model property: every satisfiable
formula ϕ of M−(©r ,©k ) is satisfied in a tree of size bounded by a computable
funcion over the size of ϕ. Hence, the satisfiability problem of M−(©r ,©k ) is
decidable.

The work presented in this paper is somehow related in spirit with the work
on Dynamic Epistemic Logic and other update logics [7,8], but as we discuss
in the introduction, our inspiration was rooted in a new interpretation of the ↓
binder.
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Technical Appendix

Proof (Theorem 5). The translation Tr, takingM(©r ,©k ) formulas over the sig-
nature 〈prop, rel〉 to HL(↓) sentences over the signature 〈prop,rel,nom〉 is
defined for any finite set N ⊆ nom as follows:

TrN (p) = p p ∈ prop
TrN (©k ) =

∨
i∈N i

TrN (¬ϕ) = ¬TrN (ϕ)
TrN (ϕ1 ∧ ϕ2) = TrN (ϕ1) ∧ TrN (ϕ2)

TrN (〈r〉ϕ) = 〈r〉TrN (ϕ)
TrN (©rϕ) = ↓i.TrN∪{i}(ϕ) where i /∈ N .

A simple induction shows that M, w |= ϕ iff M, g, w |= Tr∅(ϕ), for any g.

Proof (Proposition 1). As we said, HL1(↓) �≤ M∅(©r ,©k ) is a direct conse-
quence of the proof of Theorem 6. To prove M∅(©r ,©k ) �≤ HL1(↓), let M1 =
〈{1, 2, 3}, {(i, j) | 1 ≤ i, j ≤ 3}, ∅, ∅〉 (a clique of size 3) andM2 = 〈{1, 2}, {(i, j) |
1 ≤ i, j ≤ 2}, ∅, ∅〉 (a clique of size 2). It is easy to check that M1, 1↔HL1(↓)
M2, 1. However, the formula ϕ =©r 〈r〉(¬©k∧©r 〈r〉(¬©k∧©r 〈r〉¬©k )) distinguishes
the models: M1, 1 |= ϕ but M2, 1 �|= ϕ.

Proof (Theorem 8). All proofs are similar to (and sometimes easier than) the ones
presented above. We only discuss 2. To proveM(©r ,©k ) ≤ HL(↓) (over the ap-
propriate signatures) we adapt the translation Tr with the following clause for©k

TrN(©k ) =
( ∨

i∈N i
) ∨ known.

HL(↓) �≤ M(©r ,©k ) can be shown using the following models. Let M1 = 〈{w},
{(w,w)}, ∅, {w}〉 and M2 = 〈{u, v}, {(u, v), (v, u)}, ∅, {u, v}〉. Duplicator always
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wins on E(M1,M2, w, u) and thusM1, w↔M(©r ,©k )
M2, u. On the other hand,

M′1, w |=HL(↓) ↓i.〈r〉i but M′2, u �|=HL(↓) ↓i.〈r〉i, for M′1,M′2 the models corre-
sponding to M1 and M2.

Proof (Theorem 9). Consider the following formulas:

(Back) p ∧ [r]¬p ∧ 〈r〉� ∧©r ([r]〈r〉©k )
(Spy)©r ([r][r](¬p →©r (〈r〉(p ∧©k ∧ 〈r〉(¬p ∧©k )))))
(Irr) [r]©r¬〈r〉©k

(Succ) [r]〈r〉¬p
(3cyc) ¬(〈r〉©r 〈r〉(¬p ∧ 〈r〉(¬p ∧ ¬©k ∧ 〈r〉©k )))
(Tran) [r]©r [r](¬p → ([r](¬p→ (©r 〈r〉(p ∧ 〈r〉(©k ∧ 〈r〉©k ))))))

Let Inf be Back∧Spy∧ Irr∧Succ∧3cyc∧Tran. LetM = 〈W,R, V, ∅〉. We show
that if M, w |= Inf, then W is infinite.

Suppose M, w |= Inf. Notice that if ©k holds in a state, is because it was
previously remembered by the evaluating formula. Let B = {b ∈ W | wRb}.
Because Back is satisfied, w �∈ B, B �= ∅ and for all b ∈ B, bRw. Because Spy
is satisfied, if a �= w and a is a successor of an element of B then a is also an
element of B. As Irr is satisfied at w, every state in B is irreflexive. As Succ
is satisfied at w, every point in B has a successor distinct from w. As 3cyc is
satisfied, there cannot be 3 different elements in B forming a cycle, and this
sentence together with Tran force R to transitively order B.

It follows that B is an unbounded strict partial order, hence infinite, and so
is W .

Proof (Theorem 10). Let T = {T1, . . . , Tn} be a set of tile types. Given a tile
type Ti, u(Ti), r(Ti), d(Ti), l(Ti) will represent the colors of the up, right, down
and left edges of Ti r espectively. Define

(Back) p ∧ [S]¬p ∧ 〈S〉� ∧©r ([S]〈S〉©k ) ∧©r ([S][S]©k )
(Spy)©r [S][†]©r 〈S〉(©k ∧ p ∧ 〈S〉(©k ∧ ¬p)), where † ∈ {U,R}

(Grid) [S][U ]¬p ∧ [S][R]¬p ∧ [S]〈U〉� ∧ [S]〈r〉�
(Func)©r [S]©r 〈†〉©r 〈S〉〈S〉(©k ∧ 〈†〉©k ∧ [†]©k ), where † ∈ {U,R}

(Irr) [S]©r [†]¬©k , where † ∈ {U,R}
(2cyc) [S]©r [†][†]¬©k , where † ∈ {U,R}

(Confluent) [S]©r 〈U〉〈r〉©r 〈S〉〈S〉(©k ∧ 〈U〉〈r〉©k ∧ 〈r〉〈U〉©k )
(UR-Irr) [S]©r [U ][R]¬©k

(UR-2cyc) [S]©r [U ][R][U ][R]¬©k
(Unique) [S]

(∨
1≤i≤n ti ∧

∧
1≤i<j≤n(ti → ¬tj)

)

(Vert) [S]
∧

1≤i≤n
(
ti → 〈U〉

∨
1≤j≤n,u(Ti)=d(Tj)

tj

)

(Horiz) [S]
∧

1≤i≤n
(
ti → 〈r〉

∨
1≤j≤n,r(Ti)=l(Tj) tj

)

Let the formula ϕT be the conjunction of all the above formulas. We show
that T tiles ω × ω iff ϕT is satisfiable.
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Suppose M, w |= ϕT . Observe that (Back) and (Spy) impose w to be a spy
point over all its S-accessible states of M. These S-accessible states will be
the tiles. From this it follows that [S]ψ holds at w iff ψ is true at every tile.
Additionally, 〈S〉〈S〉ψ holds at tile v iff ψ is true at some tile (maybe the same
one).

Taking the above points into account, one can establish the following. (Grid)
states that from every tile there is another tile moving up (that is, following the
U -relation). The same holds for the right direction (following the R-relation).
(Func) forces that U and R are both functionals, given that (Irr) and (2cyc)
guarantee irreflexivity and asymmetry of U and R respectively. (Confluent) im-
poses that the tiles are arranged in a grid pattern. To make its job, (Confluent)
needs the composed relation U ◦R to be irreflexive and asymmetric, and this is
done by (UR-Irr) and (UR-2cyc) respectively.

All the formulas we discuss up to now configure the grid. The last three
ensure that every tile has a unique type ti, and that the colors of the tiles match
properly. From this, it easily follows that M is a tiling of ω × ω.

For the converse, suppose f : ω × ω → T is a tiling of ω × ω. We define the
model M = 〈W, {S,U,R}, V, ∅〉 as follows:

– W = ω × ω ∪ {w}
– S = {(w, v), (v, w) | v ∈ ω × ω} (hence w will act as the spy point)
– U = {((x, y), (x, y + 1)) | x, y ∈ ω}
– R = {((x, y), (x + 1, y)) | x, y ∈ ω}
– V (p) = {w}; V (ti) = {x | x ∈ ω × ω, f(x) = Ti}

The reader may verify that, by construction,M, w |= ϕT .
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Abstract. Non-deterministic matrices, a natural generalization of
many-valued matrices, are semantic structures in which the value as-
signed to a complex formula may be chosen non-deterministically from a
given set of options. We show that by combining Nmatrices and prefer-
ential metric-based considerations, one obtains a family of logics that are
useful for reasoning with uncertainty. We investigate the basic properties
of these logics and demonstrate their usefulness in handling incomplete
and inconsistent information.

1 Introduction

One of the main challenges of commonsense reasoning is dealing with phenom-
ena that are inherently non-deterministic. The causes of non-determinism may
vary: partially unknown information, faulty behavior of devices and ambiguity
of natural languages are just a few cases in point. It is clear that truth-functional
semantics, in which the truth-value of a complex formula is completely deter-
mined by the truth-values of its subformulas, cannot capture non-deterministic
behaviour, the very essence of which is, in some sense, contradictory to the prin-
ciple of truth-functionality. One possible solution is to borrow the idea of non-
deterministic computations from automata and computability theory and apply
it to evaluations of formulas. This idea led to introducing non-deterministic
matrices (Nmatrices) in [8]. These structures are a natural generalization of
standard multi-valued matrices [13,25], in which the truth-value of a complex
formula can be chosen non-deterministically out of some non-empty set of op-
tions. The use of Nmatrices preserves many attractive properties of logics with
ordinary finite-valued logics, such as decidability and compactness. Moreover,
as in many-valued logics, the consequence relations induced by Nmatrices are
monotonic (i.e., the set of conclusions monotonically grow in the size of the
premises), and are trivialized in the presence of inconsistency (i.e., any incon-
sistent set of premises entails every formula). In real life, however, both of these
properties are not always desirable as, e.g., it is often the case that informa-
tion systems are exposed to contradictory evidence and that new information
� Supported by the Israel Science Foundation, grant No. 809–06.
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requires a retraction of old assertions. To cope with this, Shoham [22] introduced
the notion of preferential semantics (see also [20]), according to which an order
relation, reflecting some condition or preference criteria, is defined on a set of
valuations, and only the valuations that are minimal with respect to this order
are relevant for making inferences from a given theory. Following this idea, we
use metric-like considerations as our primary preference criteria. Such distance
minimization considerations are a cornerstone behind many paradigms of han-
dling incomplete or inconsistent information, such as belief revision [9,14,18,23]
database integration systems [1,5,10,19], and formalisms for commonsense rea-
soning in the context of social choice theory [16,21]. In [2,3,7] this approach is
described in terms of entailment relations, based on a standard truth-functional
semantics. As argued above, this cannot capture non-deterministic behavior, so
instead, in this paper, we use logics based on Nmatrices as the underlying for-
malism for a preferential metric-based approach. We also consider some of the
properties of the entailment relations that are obtained, demonstrate their ap-
plicability for reasoning under uncertainty by some case studies, and show the
relation between reasoning in these cases and some well-known SAT problems.

2 Distance-Based Non-deterministic Semantics

2.1 Non-deterministic Matrices

In what follows, L denotes a propositional language with a set Atoms of atomic
formulas. A theory Γ is a finite multiset of L-formulas, for which Atoms(Γ ) and
SF(Γ ) denote, respectively, the atomic formulas of Γ and the subformulas of Γ .
Below, we shortly reproduce the main definitions from [8].

Definition 1. A non-deterministic matrix (henceforth, Nmatrix ) for L is a tu-
pleM = 〈V ,D,O〉, where V is a non-empty set of truth values, D is a non-empty
proper subset of V , and for every n-ary connective � of L, O includes an n-ary
function �̃ from Vn to 2V − {∅}.
Definition 2. An M-valuation is a function ν : L → V that satisfies the fol-
lowing condition for every n-ary connective � of L and every ψ1, . . . , ψn ∈ L,

ν(�(ψ1, . . . , ψn)) ∈ �̃(ν(ψ1), . . . , ν(ψn)).

We denote by ΛM the space of all the M-valuations.

Note that in Nmatrices the truth-values assigned to ψ1, . . . , ψn do not uniquely
determine the truth-value assigned to �(ψ1, . . . , ψn), as ν makes a non-determini-
stic choice out of the set of options �̃(ν(ψ1), . . . , ν(ψn)). Thus, the non-determinis-
tic semantics is non-truth-functional, as opposed to standard many-valued logics.

Example 1. LetM = 〈{t, f}, {t},O〉, where O contains the following operators:

¬
t {f}
f {t}

→ t f
t {t} {f}
f {t} {t}

↔ t f
t {t} {f}
f {f} {t}

∨ t f
t {t} {t}
f {t} {f}

� t f
t {t, f} {f}
f {f} {f}
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Let p, q ∈ Atoms and ν1, ν2 ∈ ΛM, such that ν1(p) = ν2(p) = ν1(q) = ν2(q) = t,
ν1(p� q) = t and ν2(p� q) = f . While ν1 and ν2 coincide on, e.g., p∨ q, and on
the proper subformulas of p � q, they make different non-deterministic choices
for p� q.

Definition 3. A valuation ν∈ΛM is a model of (or satisfies) a formula ψ inM
if ν(ψ) ∈ D. ν is a model inM of a set Γ of formulas if it satisfies every formula
in Γ . A formula ψ is M-satisfiable if it is satisfied by a valuation in ΛM. ψ is
an M-tautology if it is satisfied by every valuation in ΛM.

Definition 4. For an Nmatrix M, a formula ψ, and a theory Γ in L, denote:
modM(ψ) = {ν ∈ ΛM | ν(ψ) ∈ D} and modM(Γ ) = ∩ψ∈Γ modM(ψ).

Definition 5. The consequence relation that is induced by an Nmatrix M is
defined by: Γ |=Mψ if modM(Γ ) ⊆ modM(ψ).

In this paper we concentrate on two-valued Nmatrices with V = {t, f} and
D = {t}, and denote by M such an Nmatrix.

2.2 Preferential Distance-Based Entailments

Next, we augment non-deterministic semantics with preferential considerations.
The idea is simple: given a distance function d on a space of valuations, reasoning
with a set of premises Γ is based on those valuations that are ‘d-closest’ to Γ
(called the most plausible valuations of Γ ). For instance, under the standard
interpretation of negation, it is intuitively clear that valuations in which q is
true should be closer to Γ = {p,¬p, q} than valuations in which q is false, and
so q should follow from Γ while ¬q should not follow from Γ , although Γ is
not consistent. The formal details are given in [2,3] and are adapted to the
non-deterministic case in what follows.

Definition 6. A pseudo-distance on a set U is a total function d : U×U → R
+,

satisfying the following conditions:

– symmetry: for all ν, μ ∈ U d(ν, μ) = d(μ, ν),
– identity preservation: for all ν, μ ∈ U d(ν, μ) = 0 iff ν = μ.

A pseudo-distance d is a distance (metric) on U if it has the following property:

– triangular inequality: for all ν, μ, σ ∈ U d(ν, σ) ≤ d(ν, μ) + d(μ, σ).

Example 2. For everyM, the following two functions are distances on ΛM.

– The drastic distance: dU (ν, μ) = 0 if ν = μ and dU (ν, μ) = 1 otherwise.
– The Hamming distance: dH(ν, μ) = |{p ∈ Atoms | ν(p) = μ(p)} |. 1,2

1 Here, the set Atoms of the atomic formulas in the language is assumed to be finite.
2 The drastic distance is also known as the discrete metric, and Hamming distance is

sometimes called Dalal distance [11], or the symmetric difference. For other repre-
sentations of distances between propositional valuations see, e.g., [16].
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The non-deterministic character of our framework induces some further re-
strictions on the distances that we shall use. This is so, since two valuations for
an Nmatrix can agree on all the atoms of a formula, but still assign two different
values to that formula, thus for computing distances between valuations it is
not enough to consider only atomic formulas.3 It follows that even under the
assumption that the set of atoms is finite, there are infinitely many complex
formulas to consider. To handle this, the distance computations in the sequel
are context dependent , that is: restricted to a certain set of relevant formulas.

Definition 7. A context C is a finite set of L-formulas closed under subformulas.
The restriction to C of a valuation ν ∈ ΛM is a valuation ν↓C on C, such that
ν↓C(ψ) = ν(ψ) for every ψ in C. The restriction to C of ΛM is the set Λ↓CM =
{ν↓C | ν ∈ ΛM}, that is, Λ↓CM consists of all the M-valuations on C.

Example 3. Consider the following functions on Λ↓SF(Γ )
M × Λ↓SF(Γ )

M :

– d
↓SF(Γ )
U (ν, μ) =

{
0 if ν(ψ) = μ(ψ) for every ψ ∈ SF(Γ ),
1 otherwise.

– d
↓SF(Γ )
H (ν, μ) = |{ψ ∈ SF(Γ ) | ν(ψ) = μ(ψ)}|.

Proposition 1. d↓SF(Γ )
U and d↓SF(Γ )

H are distance functions on Λ
↓SF(Γ )
M . 4

Definition 8. Let d be a function on ∪M =
⋃
{C=SF(Γ )|Γ∈2L} Λ

↓C
M × Λ↓CM

– The restriction of d to a context C is a function d↓C on Λ↓CM× Λ↓CM, defined
for every ν, μ ∈ Λ↓CM by d↓C(ν, μ) = d(ν, μ).

– d is a generic (pseudo) distance on ΛM, if for every context C, d↓C is a
(pseudo) distance on Λ↓CM.

Example 4. Given an NmatrixM for L, define the functions dU and dH on ∪M
as follows: for every context C and every ν, ν ∈ Λ↓CM,

– dU (ν, μ) =
{

0 if ν = μ,
1 otherwise.

– dH(ν, μ) = |{ψ ∈ C | ν(ψ) = μ(ψ)}|.
The restrictions of the two functions to a context C = SF(Γ ) are given in Ex-
ample 3. By Proposition 1, then, both of these functions are generic distances
on ΛM for every Nmatrix M.

3 Thus, e.g., the Hamming distance defined in the last example should be adjusted to
the non-deterministic case, so that differences in the truth assignment of complex
formulas will be taken into consideration as well.

4 This proposition is easily verifiable. Proofs of some other propositions in this paper
appear in the appendix.
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Note 1. Denote byMc the Nmatrix for the language {¬,∧,∨,→} with the classi-
cal interpretations of the connectives (i.e.,Mc is similar to the classical determin-
istic matrix, except that its valuation functions return singletons of truth-values
instead of truth-values). Under the assumption that the set of atoms is finite, the
distance functions in Example 2 can be represented in the non-deterministic case
as metrics on Λ↓Atoms

Mc
; In the notations of Example 4, they are generic distances

on ΛMc , denoted by d↓Atoms
U and d↓Atoms

H .

Definition 9. A numeric aggregation function is total function f whose argu-
ment is a multiset of real numbers and whose values are real numbers, such that:
(i) f is non-decreasing in the value of its argument,5 (ii) f({x1, . . . , xn}) = 0 iff
x1 = x2 = . . . xn = 0, and (iii) f({x}) = x for every x ∈ R.

Definition 10. A (distance-based, non-deterministic) setting for a language L,
is a triple S = 〈M, d, f〉, where M is a non-deterministic matrix for L, d is a
generic distance on ΛM, and f is an aggregation function.

Definition 11. Given a setting S = 〈M, d, f〉 for a language L, a valuation
ν ∈ ΛM, and a set Γ = {ψ1, . . . , ψn} of formulas in L, define:

– d↓SF(Γ )(ν, ψi) =
{

min{d↓SF(Γ )(ν↓SF(Γ ), μ↓SF(Γ )) | μ ∈ modM(ψi)} if modM(ψi) = ∅,
1 + max{d↓SF(Γ )(μ↓SF(Γ )

1 , μ
↓SF(Γ )
2 ) | μ1, μ2 ∈ ΛM} otherwise.

– δ
↓SF(Γ )
d,f (ν, Γ ) = f({d↓SF(Γ )(ν, ψ1), . . . , d↓SF(Γ )(ν, ψn)}).

Note 2. In every setting S = 〈M, d, f〉, the following properties hold:

1. In the two extreme degenerate cases, when ψ is either a tautology or a con-
tradiction w.r.t.M, all the valuations are equally distant from ψ. Otherwise,
the valuations that are closest to ψ are its models and their distance to ψ is
zero. This also implies that δ↓SF(Γ )

d,f (ν, Γ ) = 0 iff ν ∈ modM(Γ ) (see also [3]).
2. A natural property of distances between valuations and formulas is that they

are not affected (biased) by irrelevant formulas (those that are not part of
the relevant context):

Proposition 2 (unbiasedness). For every ν1, ν2 ∈ΛM, C = SF(Γ ), and ψ ∈
Γ , if ν↓C1 =ν↓C2 then d↓C(ν1, ψ)=d↓C(ν2, ψ) and δ↓Cd,f(ν1, Γ )=δ↓Cd,f(ν2, Γ ).

Now we define entailment relations based on distance minimization.

Definition 12. Given a setting S = 〈M, d, f〉, the most plausible valuations of
a theory Γ are defined as follows:

ΔS(Γ ) =

{{
ν ∈ ΛM | ∀μ ∈ ΛM δ

↓SF(Γ )
d,f (ν, Γ ) ≤ δ↓SF(Γ )

d,f (μ, Γ )
}

if Γ = ∅,
ΛM otherwise.

Definition 13. Let S = 〈M, d, f〉. Define: Γ |=S ψ if ΔS(Γ ) ⊆ modM(ψ).
5 That is, the function value is non-decreasing when an element in the multiset is

replaced by a larger element.
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2.3 Examples of Reasoning with |=S

Notation. Given a theory Γ with SF(Γ ) = {ψ1, ψ2, . . . , ψn}, a valuation ν ∈
Λ
↓SF(Γ )
M is represented by {ψ1 :ν(ψ1), ψ2 :ν(ψ2), . . . , ψn :ν(ψn)}.

Example 5. Let S = 〈M, dU , Σ〉, whereM is the Nmatrix considered in Exam-
ple 1. Let Γ = {p,¬p, q,¬(p� q)}. Then:

ΔS(Γ ) =

{
{p :t, ¬p :f, q :t, p� q :f, ¬(p � q) :t},
{p :f, ¬p :t, q :t, p� q :f, ¬(p � q) :t}

}

.

Thus, Γ |=S q and Γ |=S ¬(p � q), while Γ |=S p and Γ |=S ¬p.
Example 6. A reasoner wants to learn as much as possible about a (black-box)
circuit, the structure of which is assumed to be the following:

�

�
�

� �

G1

G2in3

in2

in1

out

Fig. 1.

Here, G1 and G2 are two AND gates that are faulty or behave unpredictably
when both of their input lines are ‘on’.6 After experimenting with the circuit,
the reasoner concludes that if one of the input lines is ‘on’ then so is the output
line. This situation may be represented by the Nmatrix M of Example 1 as
follows:

Γ =
{

(in1 ∨ in2 ∨ in3)→ out
}
,

where out denotes the formula ((in1 � in2)� in3). Here, Λ↓SF(Γ )
M has 11 elements

(see the appendix), two of them are models of Γ . Thus, by Lemma 1 below, for
every setting S,

ΔS(Γ ) = modM(Γ ) =

{{
in1 :t, in2 :t, in3 :t, in1�in2 :t, out :t

}
,

{
in1 :f, in2 :f, in3 :f, in1�in2 :f, out :f

}

}

,

so the reasoner may conclude that when all the input lines have the same value,
the output line of the circuit preserves this value.

Suppose now that the reasoner learns that the value of the output line is
always different than the value of G1. The new situation can be represented by

Γ ′ = Γ ∪ {
(in1 � in2)↔ ¬out}.

6 This may happen due to noises on or off chip, variations in the manufacturing pro-
cess, adversary operations, etc.
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It is easy to verify that Γ ′ is notM-satisfiable anymore, i.e. the new information
is inconsistent with the reasoner’s previous knowledge. In such cases the usual
|=M entailment is trivialized: everything can be inferred from Γ ′. This, however,
is not the case for |=S . For instance, when S = 〈M, dU , Σ〉, we have that

ΔS(Γ ′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
in1 :t, in2 :t, in3 :t, in1�in2 :t, out :t

}
,

{
in1 :t, in2 :t, in3 :t, in1�in2 :t, out :f

}
,

{
in1 :t, in2 :t, in3 :f, in1�in2 :t, out :f

}
,

{
in1 :f, in2 :f, in3 :f, in1�in2 :f, out :f

}

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Using |=S , the reasoner may still conclude from Γ ′ that if the value of all the
input lines is ‘off’, this is also the value of the output line. This shows that |=S is
inconsistency-tolerant (see Proposition 4 below). On the other hand, a stronger
assertion, that when the values of all input lines coincide the value of the output
line is the same, is no longer a valid consequence of Γ ′. This shows that |=S is
non-monotonic (see Proposition 6 below).

3 General Properties of |=S

In this section, we consider some basic properties of the entailments that are
induced by a setting S = 〈M, d, f〉. First, we consider the relation between
basic and distance-based entailments.

Proposition 3. [6] For every setting S = 〈M, d, f〉, if Γ |=S ψ then Γ |=M ψ.
Moreover, if Γ is M-satisfiable, then Γ |=S ψ iff Γ |=M ψ.

Proposition 3 follows from the fact that if Γ is not M-satisfiable then Γ |=M ψ
for every ψ, and from the following lemma:

Lemma 1. [6] Γ is M-satisfiable iff ΔS(Γ ) = modM(Γ ).

Thus, |=S coincides with |=M w.r.t.M-consistent premises. In contrast to |=M,
however, |=S tolerates inconsistent information in a non-trivial way, thus, as
Proposition 4 shows, |=S is paraconsistent.

Definition 14. Γ1 and Γ2 are called independent if Atoms(Γ1)∩Atoms(Γ2) = ∅.
The next proposition is an improvement of a similar proposition in [6].

Proposition 4 (paraconsistency). For every Γ and every ψ such that Γ and
{ψ} are independent, Γ |=S ψ iff ψ is an M-tautology.

Corollary 1 (weak paraconsistency). For every Γ there is a ψ s.t. Γ |=S ψ.

A related property is that |=S preserves the consistency of its conclusions:

Definition 15. An Nmartix M = 〈{t, f}, {t},O〉 is with negation, if there is
a unary function ¬̃ in O such that ¬̃(t) = {f} and ¬̃(f) = {t}. A setting
S = 〈M, d, f〉 is with negation if its Nmatrix M is with negation.
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Proposition 5. [6] Let S be a setting with negation. Then for every Γ and every
ψ, if Γ |=S ψ then Γ |=S ¬ψ.

We now consider to what extent the entailment relations of our framework are
non-monotonic (i.e., whether conclusions may be revised in light of new infor-
mation).

Proposition 6 (non-monotonicity). Let S = 〈M, d, f〉 be a setting with
negation. Then |=S is non-monotonic.

In spite of Proposition 6, even for settings with negation, one may specify condi-
tions under which the entailment relations have some monotonic characteristics.

Definition 16. An aggregation function f is hereditary, if f({x1, . . . , xn}) <
f({y1, . . . , yn}) entails f({x1, . . . , xn, z1, . . . , zm}) < f({y1, . . . , yn, z1, . . . , zm}).
Example 7. The aggregation function Σ is hereditary, while max is not.

The following proposition shows that in light of new information that is unrelated
to the premises, previously drawn conclusions should not be retracted.7

Proposition 7 (rational monotonicity). Let S = 〈M, d, f〉 be a setting in
which f is hereditary. If Γ |=S ψ, then Γ, φ |=S ψ for every formula φ such that
Γ ∪ {ψ} and {φ} are independent.

The discussion above, on the non-monotonicity of |=S , brings us to the question
to what extent these entailments can be considered as consequence relations.

Definition 17. A Tarskian consequence relation [24] for a language L is a bi-
nary relation � between sets of formulas of L and formulas of L that satisfies
the following conditions:

Reflexivity : if ψ ∈ Γ , then Γ � ψ.
Monotonicity : if Γ � ψ and Γ ⊆ Γ ′, then Γ ′ � ψ.
Transitivity : if Γ � ψ and Γ ′, ψ � φ, then Γ, Γ ′ � φ.

As follows from Example 5 and Proposition 6, entailments of the form |=S are,
in general, neither reflexive nor monotonic. It is also not difficult to verify that in
general |=S is not transitive either. In the context of non-monotonic reasoning,
however, it is usual to consider the following weaker conditions that guarantee a
‘proper behaviour’ of nonmonotonic entailments in the presence of inconsistency
(see, e.g., [4,15,17,20]):

Definition 18. A cautious consequence relation for L is a relation |∼ between
sets of L-formulas and L-formulas, that satisfies the following conditions:

Cautious Reflexivity : if Γ is M-satisfiable and ψ ∈ Γ , then Γ |∼ ψ.
Cautious Monotonicity [12]: if Γ |∼ ψ and Γ |∼ φ, then Γ, ψ |∼ φ.
Cautious Transitivity [15]: if Γ |∼ ψ and Γ, ψ |∼ φ, then Γ |∼ φ.

7 This type of monotonicity is a kind of rational monotonicity , considered in [17].
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The next result is another improvement of a similar proposition in [6].

Proposition 8. Let S = 〈M, d, f〉 be a setting where f is hereditary. Then |=S
is a cautious consequence relation.

Regarding the computability of our entailments, we show that in most of the
practical cases entailment checking is decidable.

Definition 19. A setting S = 〈M, d, f〉 is computable, if f is computable, and
there is an algorithm that computes d(μ, ν) for every context C and μ, ν ∈ Λ↓CM.

Note 3. Clearly, all the distance and aggregation functions considered in this
paper are computable. Yet, as the following example shows, this is not always
the case. Let L = {∧} be a propositional language and L a first-order language
with a constant c, a unary function g and a binary relation R. Consider the
following one-to-one mapping Θ from L-formulas to L-formulas: every symbol
s in L is associated with an atomic formula ps in L, and every L-formula ψ is
mapped to the L-formula Θ(ψ), obtained by taking the conjunction of all the
atomic formulas to which the symbols of ψ are mapped. For instance, the formula
∀x1∀x2R(x1, x2) is mapped to p∀∧px1 ∧p∀ ∧px2 ∧pR ∧p( ∧px1 ∧p, ∧px2 ∧p). A
formula ψ in L is called proper if there is an L-formula ψ′ s.t. ψ = Θ(ψ′). Now,
consider the following pseudo distance:

d(ν, μ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ν = μ,
1 if ν = μ and there is a proper ψ s.t. ν, μ ∈ Λ↓SF(ψ)

M ,
and Θ−1(ψ) is satisfiable,

2 otherwise.

Since SF(ψ) = SF(φ) whenever ψ = φ, the pseudo distance above is well de-
fined. Now, as the satisfiability problem for L-formulas is undecidable, d is not
computable.

Proposition 9. For every computable setting S, the question whether Γ |=S ψ
is decidable.

4 Some Particular Cases of Reasoning with |=S

In this section we focus on drastic settings, i.e., settings with a drastic distance
(see Examples 2 and 4). In this context we investigate the following aggregation
functions:

Definition 20. An aggregation function f is range restricted if f({x1, . . . , xn})
∈ {x1, . . . , xn}; f is called additive if for any non-empty set S it can be repre-
sented as f(S) = g(|S|) ·Σx∈S x, for some function g : N

+ → R
+.

Example 8. The maximum function is a range-restricted but not additive, while
the summation (respectively, the average) is additive where g is uniformly 1
(respectively, g(n) = 1

n ), but it is not range-restricted.
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The next proposition should be compared with Proposition 4.

Proposition 10. Let S = 〈M, dU , f〉 be a drastic setting in which f is range
restricted. Let Γ be a set of formulas that is not M-satisfiable. Then Γ |=S ψ iff
ψ is an M-tautology.

Corollary 2. Let S be a drastic setting with a range-restricted aggregation func-
tion. If Γ |=S ψ then either Γ |=M ψ or ψ is an M-tautology.

The last corollary shows that reasoning with drastic distances and range-restric-
ted functions has a somewhat ‘crude nature’: either the set of premises is M-
consistent, in which case the set of conclusions coincides with that of the basic
entailment, or, in case of contradictory premises, only tautologies are entailed.

The behavior of drastic settings with additive functions is completely different:
entailments in this case are closely related to the maximum satisfiability problem:

Definition 21. Let SATM(Γ ) be the set of all the M-satisfiable subsets of Γ .
The set mSATM(Γ ) of the maximally M-satisfiable subsets of Γ consistent of
all the elements Υ ∈ SATM(Γ ) such that |Υ ′| ≤ |Υ | for every Υ ′ ∈ SATM(Γ ).

Note 4. Clearly, mSATM(Γ ) is nonempty whenever Γ contains anM-satisfiable
element.

Proposition 11. Let S = 〈M, dU , f〉 be a drastic setting with additive f and
let Γ be a finite set of formulas. Then:

ΔS(Γ ) =

{
{ν ∈ modM(Υ ) | Υ ∈ mSATM(Γ )} if mSATM(Γ ) = ∅,
ΛM otherwise.

Corollary 3. Let S be a drastic setting with additive f . If mSATM(Γ ) = ∅ and
Γ ′ |=M ψ for every Γ ′∈mSATM(Γ ), then Γ |=S ψ.

Example 9. By taking S = 〈Mc, dU , Σ〉 in the last corollary, we get that rea-
soning with summation of drastic distances is equivalent to checking classical
entailments from the maximally consistent subsets of the premises.

Note 5. It is easy to verify that all the results in this section still hold for settings
S = 〈M, d, f〉, where for every context C = SF(Γ ) there is some constant kC > 0,
such that for all ψ ∈ Γ and ν ∈ ΛM,

d↓C(ν, ψ) =
{

0 if ν ∈ modM(ψ),
kC otherwise.

Note that drastic settings S = 〈M, dU , f〉 are a particular instance of this defi-
nition, in which kC = 1 for every context C.
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A Supplementary Material

Elaboration on Example 6: Below, we use the following abbreviations:
G1 = (in1 � in2), ψ1 = (in1 ∨ in2 ∨ in3)→ out,
out = ((in1 � in2) � in3), ψ2 = (in1 � in2)↔ ¬out.

In these notations,Γ = {ψ1} and Γ ′ = {ψ1, ψ2}. Distances to elements ofΛ↓SF(Γ )
M

are given below, where δ(·) abbreviates δdU,Σ(ν, ·) for the relevant valuation ν.

in1 in2 in3 G1 out δ(ψ1) δ(ψ2) δ(Γ ) δ(Γ ′)
ν1 t t t t t 0 1 0 1
ν2 t t t t f 1 0 1 1
ν3 t t t f f 1 1 1 2
ν4 t t f t f 1 0 1 1
ν5 t t f f f 1 1 1 2
ν6 t f t f f 1 1 1 2
ν7 t f f f f 1 1 1 2
ν8 f t t f f 1 1 1 2
ν9 f t f f f 1 1 1 2
ν10 f f t f f 1 1 1 2
ν11 f f f f f 0 1 0 1

Thus, ΔS(Γ ) = {ν1, ν11} and ΔS(Γ ′) = {ν1, ν2, ν4, ν11}.
We turn now to the proofs of the propositions in the paper: Proposition 1 and

Proposition 2 are easy. The proofs of Propositions 3, 5, and 6 appear in [6]. The
proof of Proposition 4 is a variation of the proof of Proposition 39 in [6]. Below,
we show the other results:

Proof of Proposition 7: Let Γ = {ψ1, . . . , ψn} and μ ∈ ΛM, s.t. μ(ψ) = f . As
Γ |=S ψ, μ ∈ ΔS(Γ ), so there is ν ∈ ΔS(Γ ) with δ

↓SF(Γ )
d,f (ν, Γ ) < δ

↓SF(Γ )
d,f (μ, Γ ),

i.e., f({d↓SF(Γ )(ν, ψ1), . . . , d↓SF(Γ )(ν, ψn)}) < f({d↓SF(Γ )(μ, ψ1), . . . , d↓SF(Γ )(μ,
ψn)}). As Γ |=S ψ, it follows that ν(ψ) = t. Now, as Atoms(Γ ∪ {ψ}) ∩
Atoms({φ}) = ∅, one can easily define anM-valuation σ such that σ(ϕ) = ν(ϕ)
for every ϕ ∈ SF(Γ ∪ {ψ}) and σ(ϕ) = μ(ϕ) for every ϕ ∈ SF({φ}). By Proposi-
tion 2, and since f is hereditary, we have:

δ
↓SF(Γ )
d,f (σ, Γ ∪ {φ}) = f({d↓SF(Γ )(σ, ψ1), . . . , d↓SF(Γ )(σ, ψn), d↓SF(Γ )(σ, φ)})

= f({d↓SF(Γ )(ν, ψ1), . . . , d↓SF(Γ )(ν, ψn), d↓SF(Γ )(μ, φ)})
< f({d↓SF(Γ )(μ, ψ1), . . . , δ↓SF(Γ )

d,f (μ, ψn), d↓SF(Γ )(μ, φ)})
= δ

↓SF(Γ )
d,f (μ, Γ ∪ {φ})
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Thus, for every μ ∈ ΛM such that μ(ψ) = f , there is some σ ∈ ΛM such
that σ(ψ) = t and δ

↓SF(Γ )
d,f (σ, Γ ∪ {φ}) < δ

↓SF(Γ )
d,f (μ, Γ ∪ {φ}). It follows that the

elements of ΔS(Γ ∪ {φ}) must satisfy ψ, and so Γ, φ |=S ψ. ��

Proof of Proposition 8: Cautious reflexivity follows from Proposition 3. The
proofs for cautious monotonicity and cautious transitivity are an adaptation of
the ones for the deterministic case (see [3]):

For cautious monotonicity, let Γ = {γ1, . . . , γn} and suppose that Γ |=S ψ,
Γ |=S φ, and ν ∈ ΔS(Γ ∪ {ψ}). We show that ν ∈ ΔS(Γ ) and since Γ |=S φ
this implies that ν ∈ modM({φ}). Indeed, if ν /∈ ΔS(Γ ), there is a valuation
μ ∈ ΔS(Γ ) so that δd,f (μ, Γ ) < δd,f(ν, Γ ), i.e., f({d(μ, γ1), . . . , d(μ, γn)}) <
f({d(ν, γ1), . . . , d(ν, γn)}). Also, as Γ |=S ψ, μ ∈ modM({ψ}), thus d(μ, ψ) = 0.
By these facts, then,

δd,f(μ, Γ ∪ {ψ})=f({d(μ, γ1), . . . , d(μ, γn), 0})
<f({d(ν, γ1), . . . , d(ν, γn), 0})
≤f({d(ν, γ1), . . . , d(ν, γn), d(ν, ψ)}) = δd,f(ν, Γ ∪ {ψ}),

a contradiction to ν ∈ ΔS(Γ ∪ {ψ}).
For cautious transitivity, let again Γ = {γ1, . . . , γn} and assume that Γ |=S ψ,

Γ, ψ |=S φ, and ν∈ΔS(Γ ). We have to show that ν∈modM({φ}). Indeed, since
ν ∈ ΔS(Γ ), for all μ ∈ ΛM, f({d(ν, γ1), . . . , d(ν, γn)}) ≤ f({d(μ, γ1), . . . , d(μ,
γn)}). Moreover, since Γ |=S ψ, ν ∈modM({ψ}), and so d(ν, ψ) = 0 ≤ d(μ, ψ).
It follows, then, that for every μ ∈ ΛM,

δd,f(ν, Γ ∪ {ψ})=f({d(ν, γ1), . . . , d(ν, γn), d(ν, ψ)})
≤f({d(μ, γ1), . . . , d(μ, γn), d(ν, ψ)})
≤f({d(μ, γ1), . . . , d(μ, γn), d(μ, ψ)}) = δd,f(μ, Γ ∪ {ψ}).

Thus, ν ∈ ΔS(Γ ∪ {ψ}), and since Γ, ψ |=S φ, necessarily ν ∈ modM({φ}). ��

Proof outline of Proposition 9: Suppose that S is a computable setting.
By Definition 17, in order to check whether Γ |=S ψ, one has to check whether
ΔS(Γ ) ⊆ modM(ψ). For decidability, we show that this condition, which involves
infinite sets, can be reduced to an equivalent condition in terms of finite sets. For
this, we denote by mod↓CM(ψ) the set {μ↓C | μ ∈ modM(ψ)}. Next, we extend the
notions of distance between a valuation and a formula and distance between a
valuation and a theory to partial valuations as follows: for every context C such
that SF(Γ ) ⊆ C, define, for every ν ∈ Λ↓SF(Γ )

M and every ψ ∈ Γ ,

– d↓SF(Γ )(ν, ψ) =
{

min{d↓SF(Γ )(ν↓SF(Γ ), μ↓SF(Γ )) | μ ∈ mod↓CM(ψ)} if mod↓CM(ψ) = ∅,
1 + max{d↓SF(Γ )(μ↓SF(Γ )

1 , μ
↓SF(Γ )
2 ) | μ1, μ2 ∈ Λ↓CM} otherwise.

– δ
↓SF(Γ )
d,f (ν, Γ ) = f({d↓SF(Γ )(ν, ψ1), . . . , d↓SF(Γ )(ν, ψn)}).
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Note that since all the partial valuations involved in the definitions above are
defined on finite contexts, there are finitely many such valuations to check, and so
d↓SF(Γ )(ν, ψ) and δ↓SF(Γ )

d,f (ν, Γ ) are computable for every ν ∈ Λ↓CM. Now, consider
the following set of partial valuations on C:

Δ↓CS (Γ ) =

{{
ν ∈ Λ↓CM | ∀μ ∈ ΛM δ

↓SF(Γ )
d,f (ν, Γ ) ≤ δ↓SF(Γ )

d,f (μ, Γ )
}

if Γ = ∅,
Λ↓CM otherwise.

Clearly, Δ↓CS (Γ ) and mod↓CM(ψ) are computable. Decidability now follows from
the fact that ΔS(Γ ) ⊆ modM(ψ) if and only if Δ↓CS (Γ ) ⊆ mod↓CM(ψ). ��
Proof of Proposition 10: Let μ ∈ ΛM. As Γ = {ϕ1, . . . , ϕn} is not M-
satisfiable, μ is not a model of Γ , and so there is some formula ϕj ∈ Γ such that
d
↓SF(Γ )
U (μ, ϕj) = 1. Moreover, for every ϕi ∈ Γ we have that d↓SF(Γ )

U (μ, ϕi) ∈
{0, 1} and so, since f is range-restricted,

δ
↓SF(Γ )
dU,f

(μ, Γ ) = f({d↓SF(Γ )
U (μ, ϕ1), . . . , d↓SF(Γ )

U (μ, ϕn)}) = 1.

This shows that all the valuations in ΛM are equally distant from Γ and so
ΔS(Γ ) = ΛM. Thus, Γ |=S ψ iff ΔS(Γ ) ⊆ modM(ψ), iff modM(ψ) = ΛM, iff ψ
is a tautology. ��
Proof of Proposition 11: Consider a theory Γ = {ψ1, . . . , ψn}, and assume
first that mSATM(Γ ) = ∅. Since S is drastic, for every ψ ∈ Γ and every ν ∈ ΛM,
d
↓SF(Γ )
U (ν, ψ) = 0 if ν ∈ modM(ψ), and otherwise d↓SF(Γ )

U (ν, ψ) = 1. Now, since
f is additive, we have that

δ
↓SF(Γ )
dU,f

(ν, Γ ) = f{d↓SF(Γ )
U (ν, ψ1), . . . , d↓SF(Γ )

U (ν, ψn)}
= g(n) · (d↓SF(Γ )

U (ν, ψ1) + . . .+ d
↓SF(Γ )
U (ν, ψn))

= g(n) · |{ψ ∈ Γ | ν /∈ modM(ψ)}|.
Thus, ν ∈ ΔS(Γ ) iff the set {ψ ∈ Γ | ν /∈ modM(ψ)} is minimal in its size, iff
{ψ ∈ Γ | ν ∈ modM(ψ)} is maximal in its size, iff this set belongs to mSATM(Γ ).

Now assume that mSATM(Γ ) = ∅. In this case none of the formulas in Γ is
M-satisfiable (see Note 4). Thus, as

MdU (Γ ) = max{d↓SF(Γ )
U (μ↓SF(Γ )

1 , μ
↓SF(Γ )
2 ) | μ1, μ2 ∈ Λ↓SF(Γ )

M } = 1,

we have that for every ν ∈ ΛM,

δ
↓SF(Γ )
dU,f

(ν, Γ ) = f{d↓SF(Γ )
U (ν, ψ1), . . . , d↓SF(Γ )

U (ν, ψn)}
= g(n) · (d↓SF(Γ )

U (ν, ψ1) + . . .+ d
↓SF(Γ )
U (ν, ψn))

= g(n) · n · (1 + MdU (Γ ))
= 2n · g(n).

Thus, all the elements in ΛM are equally distant from Γ , and so ΔS(Γ ) =
ΛM. ��
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Abstract. This work presents a Propositional Dynamic Logic in which
the programs are CCS terms (CCS-PDL). Its goal is to reason about
properties of concurrent systems specified in CCS. CCS is a process al-
gebra that models the concurrency and interaction between processes
through individual acts of communication. At a first step, we consider
only CCS processes without constants and give a complete axiomatiza-
tion for this logic, which is very similar to ∗-free PDL. Then, we proceed
to include CCS processes with constants. In this case, we impose some
restrictions on the form of the recursive equations that can be built with
those constants. We also give an axiomatization for this second logic
and prove its completeness using a Fischer-Ladner construction. Unlike
Concurrent PDL (with channels) [1,2], our logic has a simple Kripke
semantics, a complete axiomatization and the finite model property.

1 Introduction

Propositional Dynamic Logic (PDL) plays an important role in formal specifi-
cation and reasoning about programs and actions. PDL is a multi-modal logic
with one modality 〈π〉 for each program π. The logic has a finite set of basic
programs and a set of operators (sequential composition, iteration and nondeter-
ministic choice) that can be used to build more complex programs from simpler
ones. PDL has been used in formal specification to reason about properties of
programs and their behaviour. Correctness, termination, fairness, liveness and
equivalence of programs are among the properties that one usually wants to ver-
ify. A Kripke semantics can be provided, with a frame F = 〈W, Rπ〉, where W is
a set of possible program states and, for each program π, Rπ is a binary relation
on W such that (s, t) ∈ Rπ if and only if there is a computation of π starting in
s and terminating in t.

The Calculus for Communicating Systems (CCS) is a well known process al-
gebra, proposed by Robin Milner [3], for the specification of concurrent systems.
It models the concurrency and interaction between processes through individual
acts of communication. A pair of processes can communicate through a com-
mon channel and each act of communication consists simply of a signal being
sent at one end of the channel and (immediately) being received at the other.
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A CCS specification is a description (in the form of algebraic equations) of the
behaviour expected from a system, based on the communication events that may
occur. As in PDL, CCS has a set of operators (action prefix, parallel composi-
tion, nondeterministic choice and restriction on acts of communication) to build
more complex specifications from simpler ones. Iteration can also be described
through the use of recursive equations.

This work presents a Propositional Dynamic Logic in which the programs
are CCS terms (CCS-PDL). Its goal is to reason about properties of concurrent
systems specified in CCS. The idea is to bring together the logical and the
algebraic formalisms. Quoting from Milner [3]:

“The calculus of this book is indeed largely algebraic, but I make no
claim that everything can be done by algebra. (. . .) It is perhaps equally
true that not everything can be done by logic; thus one of the outstanding
challenges in concurrency is to find the right marriage between logical
and behavioural approaches.”

CCS-PDL is related to Concurrent PDL (with channels) [1,2] and the logic
developed in [4]. Both of these logics are expressive enough to represent inter-
esting properties of concurrent systems. However, neither of them has a simple
Kripke semantics. The first has a semantics based on super-states and super-
processes and its satisfiability problem can be proved undecidable (in fact, it is
Π1

1 -hard) [1]. Also, it does not have a complete axiomatization [1]. The second
makes a semantic distinction between final and non-final states, which makes
its semantics and its axiomatization rather complex. On the other hand, due to
the full use of the CCS mechanism of communication, CCS-PDL has a simple
Kripke semantics and the finite model property.

The rest of this paper is organized as follows. In section 2, we introduce the
necessary background concepts: Propositional Dynamic Logic and the Calculus
for Communicating Systems. A first version of our logic, together with an ax-
iomatic system, is presented in section 3. In this preliminary version, we do not
use constants in the CCS processes. In section 4, we present the full logic, in
which we allow the presence of constants in the CCS processes. We also give an
axiomatization for this second logic and prove its completeness using a Fischer-
Ladner construction. Finally, in section 5, we state our final remarks.

2 Background

This section presents two important subjects. First, we make a brief review of
the syntax and semantics of PDL. Second, we present the process algebra CCS
and the Expansion Law, which is closely related to the way we deal with the
parallel composition operator.

2.1 Propositional Dynamic Logic

In this section, we present the syntax and semantics of PDL.
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Definition 1. The PDL language consists of a set Φ of countably many propo-
sitional symbols, a finite set of basic programs Π, the boolean connectives ¬ and
∧, the program constructors ;, ∪ and ∗ and a modality 〈π〉 for every program π.
The formulas are defined as follows:

ϕ ::= p | � | ¬ϕ | ϕ1 ∧ ϕ2 | 〈π〉ϕ, with π ::= a | π1; π2 | π1 ∪ π2 | π∗ ,

where p ∈ Φ and a ∈ Π.

In this logic and in every other logic defined in this paper, we use the standard
abbreviations ⊥ ≡ ¬�, ϕ ∨ φ ≡ ¬(¬ϕ ∧ ¬φ), ϕ → φ ≡ ¬(ϕ ∧ ¬φ) and [π]ϕ ≡
¬〈π〉¬ϕ.

Definition 2. A frame for PDL is a tuple F = (W, Ra, Rπ) where

– W is a non-empty set of states;
– Ra is a binary relation for each basic program a;
– Rπ is a binary relation for each non-basic program π, inductively built using

the rules Rπ1;π2 = Rπ1 ◦ Rπ2, Rπ1∪π2 = Rπ1 ∪Rπ2 and Rπ∗ = R∗π, where R∗π
denotes the reflexive transitive closure of Rπ.

Definition 3. A model for PDL is a pair M = (F ,V), where F is a PDL
frame and V is a valuation function V : Φ �→ 2W .

The semantical notion of satisfaction for PDL is defined as follows:

Definition 4. Let M = (F ,V) be a model. The notion of satisfaction of a
formula ϕ in a model M at a state w, notation M, w � ϕ, can be inductively
defined as follows:

– M, w � p iff w ∈ V(p);
– M, w � � always;
– M, w � ¬ϕ iff M, w �� ϕ;
– M, w � ϕ1 ∧ ϕ2 iff M, w � ϕ1 and M, w � ϕ2;
– M, w � 〈π〉ϕ iff there is w′ ∈ W such that wRπw′ and M, w′ � ϕ.

2.2 Calculus for Communicating Systems

The Calculus for Communicating Systems (CCS) is a well known process algebra,
proposed by Robin Milner [3], for the specification of concurrent systems. It
models the concurrency and interaction between processes through individual
actions of communication. A CCS specification is a description (in the form
of algebraic equations) of the behaviour expected from a system, based on the
communication events that may occur.

In CCS, a pair of processes can communicate through a common channel and
each act of communication consists simply of a signal being sent at one end of the
channel and (immediately) being received at the other. Each process connects
itself to a channel through a port.
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Let N = {a, b, c, . . .} be a set of names and N = {a, b, c, . . .} be the corre-
spondent set of co-names. Each port in a CCS specification is labelled by either
a name or a co-name. Using the convention that a = a, if a port connected to
an end of a channel is labelled with α ∈ N ∪ N , then a port connected to the
other end of this same channel must be labelled with α. Moreover, two ports of a
process cannot have the same label. Channels in CCS can only transmit signals
in one direction. By convention, signals are sent through the ports labelled by
co-names and received through ports labelled by names.

The labels of the ports are also used to describe the communication actions
performed by the processes. For example, if a process is connected to a channel
through port α, the action of sending a signal into this channel is also denoted
by α. So, in terms of actions, α means that the process receives a signal through
the port labelled with α and α means that the process sends a signal through
the port labelled with α. A process can never perform a communication action
α without its complementary action α also being performed at the same time
by some other process.

Besides the actions denoted by the elements of N ∪ N , CCS admits only
one other action: the silent action, denoted by τ . The silent action is used to
represent any internal action performed by any of the processes that does not
involve any act of communication (e.g.: a memory update). Thus, we have that
the set of CCS actions is A = N ∪ N ∪ {τ}.

There are two different ways in CCS to consider the τ action: it can be re-
garded as being observable, in the same way as the communication actions, or
it can be regarded as being invisible. We will adopt the first point of view, since
it simplifies the semantics considerably.

In CCS, process specifications can be built using the following operations
(α ∈ A is an action, P , P1 and P2 are process specifications, A is a constant and
L ⊆ N ):

P ::= α | α.P | α.A | P1 + P2 | P1|P2 | P\L , 1

where every constant A has a (unique) defining equation A
def
= PA, where PA

is a process specification. In this work, every time that a process is linked to a
constant A through a defining equation, it will be denoted by PA.

The prefix operator (.) denotes that the process will first perform the action
α and then behave as P or A. The summation (or nondeterministic choice)
operator (+) denotes that the process will make a nondeterministic choice to
behave as either P1 or P2. The parallel composition operator (|) denotes that the
processes P1 and P2 may proceed independently or may communicate through
a pair of complementary ports (one performing an action α and the other α).
Finally, the restriction operator (\) denotes that for all ports α such that α ∈ L
or α ∈ L, α is unreachable outside P . Iteration in CCS is modeled through
recursive defining equations, i.e., equations A

def
= PA where A occurs in PA.

We write P
α→ P ′ to express that the process P can perform the action α

and after that behave as P ′. We write P
α→ 0 to express that the process P

1 Originally, CCS has also a relabelling operator.
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Table 1. Transition Relations of CCS

Action
α

α→0
Prefix

α.P
α→P

Constant A
def
= PA

α.A
α→PA

Summation (1) E
α→E′

E+F
α→E′ Summation (2) F

β→F ′

E+F
β→F ′

Restriction E
α→E′,α,α�∈L

E\L
α→E′\L

Par. Comp. (1) E
α→E′

E|F α→E′|F Par. Comp. (2) F
β→F ′

E|F β→E|F ′
Par. Comp. (3) E

λ→E′,F λ→F ′

E|F τ→E′|F ′

finishes after performing the action α. A process only finishes when there is not
any possible action left for it to perform. For example, β

β→ 0. When a process
finishes inside a parallel composition, we write P instead of P |0. In table 1, we
present the semantics for the operators based on this notation.

The notion of equality between process specifications is defined through the
concept of strong bisimulation.

Definition 5. Let P be the set of all possible process specifications. A set Z ⊆
P × P is a strong bisimulation if (P, Q) ∈ Z implies, for all α ∈ A,

– Whenever P
α→ P ′ then, for some Q′, Q

α→ Q′ and (P ′, Q′) ∈ Z

– Whenever Q
α→ Q′ then, for some P ′, P

α→ P ′ and (P ′, Q′) ∈ Z

Definition 6. Two process specifications P and Q are strongly bisimilar (or
simply bisimilar), denoted by P ∼ Q, if there is a strong bisimulation Z such
that (P, Q) ∈ Z. Two process specifications are considered “equal” if they are
bisimilar.

Bisimilarity is preserved by all of CCS operators:

Theorem 1 ([3]). Let P1 ∼ P2. Then

1. α.P1 ∼ α.P2;
2. P1 + Q ∼ P2 + Q;
3. P1|Q ∼ P2|Q;
4. P1\L ∼ P2\L.

A very useful property of CCS processes is that they can be rewritten as a
summation of all their possible actions. This is what states the Expansion Law
below. This theorem will be very important in the definition of the semantics of
our logic in the next section.

Theorem 2 (Expansion Law [3]). Let P = (P1 | P2). Then

P ∼
∑

{α.(P ′1 | P2) : P1
α→ P ′1} +

∑
{α.(P1 | P ′2) : P2

α→ P ′2}+

+
∑

{τ.(P ′1 | P ′2) : P1
λ→ P ′1, P2

λ→ P ′2} .

In the rest of this paper, we consider that the restriction operator does not
occur in the processes. In order to motivate the use of CCS, we present a simple
example below:
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Example 1 (Vending Machine [3,5]). Consider a vending machine where one can
put coins of one or two euro and buy a little or a big chocolate bar. After inserting
the coins, one must press the little button for a little chocolate or the big button
for a big chocolate. The machine is also programmed to shutdown on its own
following some internal logic (represented by a τ action). A CCS term describing
the behaviour of this machine is the following:

V = 1e.little.collect.A + 1e.1e.big.collect.A + 2e.big.collect.A

A
def
= 1e.little.collect.A + 1e.1e.big.collect.A + 2e.big.collect.A + τ

Let us now suppose that Chuck wants to use this vending machine. We could
describe Chuck as

C = 1e.little.collect + 1e.1e.big.collect + 2e.big.collect .

Notice that Chuck does not have an iterative behaviour. Once he collects the
chocolate, he is done. Now, if we want to model the process of Chuck buying a
chocolate from the vending machine, we could write (V |C).

3 PDL for CCS Programs without Constants

This section presents a suitable fragment of CCS-PDL. In this fragment, all CCS
processes do not use constants. We call this fragment Small CCS-PDL or SCCS-
PDL. Our goal is to introduce a smaller version of our logic and discuss some of
the issues concerning the axioms and the relational interpretation of formulas.

3.1 Language and Semantics

Definition 7. The SCCS-PDL language consists of a set Φ of countably many
propositional symbols, a finite set of actions A that includes the silent action τ ,
the boolean connectives ¬ and ∧, the CCS operators ., + and | and a modality
〈P 〉 for every process P . The formulas are defined as follows:

ϕ ::= p | � | ¬ϕ | ϕ1 ∧ ϕ2 | 〈P 〉ϕ, with P ::= α | α.P | P1 + P2 | P1|P2 ,

where p ∈ Φ and α ∈ A.

Going back to the example of the vending machine, we could use this language
to express that after the insertion of two one euro coins, the machine does not
accept coins anymore. This can be expressed with the formula [1e.1e][1e + 2e]⊥.

Definition 8. We define the length of a process P , denoted by ||P ||, as the
number of symbols in P . We also define the length of a finished process as 0.

Theorem 3. If P is a process without any constants and P
α→ P ′, then ||P ′|| <

||P ||.
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Definition 9. A frame for SCCS-PDL is a tuple F = (W, Rα, RP ) where

– W is a non-empty set of states;
– Rα is a binary relation for each basic action α, including τ ;
– RP is a binary relation for each non-basic process P , inductively built as:

• Rα.P = Rα ◦ RP ;
• R(P1+P2) = RP1 ∪ RP2 ;
• R(P1|P2) =

⋃
P1

α→P ′
1
Rα ◦ R(P ′

1|P2) ∪
⋃

P2
α→P ′

2
Rα ◦ R(P1|P ′

2)
∪

∪
⋃

P1
λ→P ′

1

P2
λ→P ′

2

Rτ ◦ R(P ′
1|P ′

2)

It should be noticed that the Expansion Law stated in theorem 2 is what allows
us to define a simple relational semantic to the parallel composition operator.
Besides that, theorem 3 guarantees that we can fully define the relation RP in
terms of the relations Rα, for any process P , applying the above rules a finite
number of times.

Definition 10. A model for SCCS-PDL is a pair M = (F ,V), where F is a
SCCS-PDL frame and V is a valuation function V : Φ �→ 2W .

The semantical notion of satisfaction for SCCS-PDL is defined as follows:

Definition 11. Let M = (F ,V) be a model. The notion of satisfaction of a
formula ϕ in a model M at a state w, notation M, w � ϕ, can be inductively
defined as follows:

– M, w � p iff w ∈ V(p);
– M, w � � always;
– M, w � ¬ϕ iff M, w �� ϕ;
– M, w � ϕ1 ∧ ϕ2 iff M, w � ϕ1 and M, w � ϕ2;
– M, w � 〈P 〉ϕ iff there is w′ ∈ W such that wRP w′ and M, w′ � ϕ.

If M, w � ϕ for every state w, we say that ϕ is globally satisfied in the model
M, notation M � ϕ. If ϕ is globally satisfied in all models M of a frame F , we
say that ϕ is valid in F , notation F � ϕ. Finally, if ϕ is valid in all frames, we
say that ϕ is valid, notation � ϕ.

3.2 Proof Theory

We consider the following set of axioms and rules, where p and q are proposition
symbols and ϕ and ψ are formulas.

(PL) Enough propositional logic tautologies
(K) [P ](p → q) → ([P ]p → [P ]q)
(Pr) 〈α.P 〉p ↔ 〈α〉〈P 〉p,
(NC) 〈P1 + P2〉p ↔ 〈P1〉p ∨ 〈P2〉p
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(PC) 〈P1 | P2〉p ↔
∨

P1
α→P ′

1
〈α〉〈P ′1 | P2〉p ∨

∨
P2

α→P ′
2
〈α〉〈P1 | P ′2〉p ∨

∨
∨

P1
λ→P ′

1

P2
λ→P ′

2

〈τ〉〈P ′1 | P ′2〉p

(Sub) If � ϕ, then � ϕσ, where σ uniformly substitutes proposition symbols
by arbitrary formulas.

(MP) If � ϕ and � ϕ → ψ, then � ψ.
(Gen) If � ϕ, then � [P ]ϕ.

These axioms are closely related to the conditions imposed in Definition 9.
The second axiom is the K axiom for modal logics. The third and fourth axioms
are well-known from PDL literature and define sequential composition and choice
operators respectively. The fifth axiom corresponds to the Expansion Law for
the parallel composition operator.

The logic presented in this section is sound and complete w.r.t. the class of
frames described in Definition 9. It also has the finite model property. We omit
the proofs here, because they are analogous to the proofs presented in section 4,
where constants are added to the language.

4 PDL for CCS Programs

The logic presented in this section uses the same CCS operators as in the previous
section plus constants. This is the full CCS-PDL logic. Our goal in this section
is to build an axiomatic system to CCS-PDL and prove its completeness.

4.1 Language and Semantics

Definition 12. The CCS-PDL language consists of a set Φ of countably many
propositional symbols, a finite set of actions A that includes the silent action τ ,
the boolean connectives ¬ and ∧, the CCS operators ., + and |, constants, with
its correspondent defining equations, and a modality 〈P 〉 for every process P .
The formulas are defined as follows:

ϕ ::= p | � | ¬ϕ | ϕ1 ∧ ϕ2 | 〈P 〉ϕ, with P ::= α | α.P | α.A | P1 + P2 | P1|P2 ,

where p ∈ Φ and α ∈ A.

Let P be a process and {A1, . . . , An} be the constants that occur in P . We define
Cons(P ) as the smallest set of constants such that Cons(P ) ⊇ {A1, . . . , An} and,
for every constant Ai ∈ Cons(P ), if Ak occurs in PAi , then Ak ∈ Cons(P ). We
make the restriction that Cons(P ) must be a finite set for every process P .

Another restriction concerns the construction of defining equations. We only
allow defining equations that fit into one of the following models: A

def
= PA, where

A /∈ Cons(PA), called non-recursive equations, or A
def
= −→α 1.A+ . . .+−→α n.A+TA,

called recursive equations, where −→α i denotes a sequence of actions αi
1.α

i
2 . . . αi

mi

and A /∈ Cons(TA).
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Definition 13. We say that a process P is a looping process if P = PA for
some constant A with a recursive defining equation or if P = P1 | P2 where P1

or P2 is a looping process. Otherwise, we say that P is a non-looping process.

Definition 14. We write P
−→α⇒ P ′ to express that the process P can perform the

sequence of actions −→α and after that behave as P ′. We write P
−→α⇒ 0 to express

that the process P finishes after performing the sequence of actions −→α .

Definition 15. We call a sequence −→α a breaker for a looping process P if P =

PA, P
−→α⇒ P ′ and A /∈ Cons(P ′) (or P

−→α⇒ 0) or if P = P1 | P2, Pi (i ∈ {1, 2}) is
a looping process and −→α is a breaker for Pi. These sequences are called breakers

because after performing −→α , there is no sequence of actions −→α ′ such that P ′
−→α ′
⇒

P , i. e., the loop around P is broken by −→α .

Using the concept of a breaker, we can split a looping process P into two parts:
the looping part, denoted by LP , and the tail part, denoted by TP . Informally,
LP describes one loop around P and TP describes the behaviour of P when it
stops looping. Let Br(P ) be the set of all breakers for P . Then,

TP =
∑

{−→α .P ′ : −→α ∈ Br(P ), P
−→α⇒ P ′ and ∀−→α ′ � −→α , P

−→α ′

�⇒ P} and

LP =
∑

{−→α : P
−→α⇒ P and ∀−→α ′ � −→α , P

−→α ′

�⇒ P} .

If P = PA = −→α 1.A + . . . + −→α n.A + TA, it is not difficult to see that LP =
−→α 1+. . .+−→α n and TP = TA. We also define the process L′P , that describes one or

more loops around P , as L′P =
∑

{−→α .ZP : P
−→α⇒ P and ∀−→α ′ � −→α , P

−→α ′

�⇒ P}+LP ,

where ZP is a new constant with defining equation ZP
def
= L′P . It is important

to notice that Cons(LP ) � Cons(P ) and Cons(TP ) � Cons(P ).

Definition 16. We say that a process can unfold a constant if it has the form
α.A or if it has the form P1 + P2 or P1 | P2, where P1 or P2 can unfold a
constant.

Theorem 4. If P is a process that cannot unfold a constant and P
α→ P ′, then

||P ′|| < ||P ||.

Definition 17. A frame for CCS-PDL is a tuple F = (W, Rα, RP ) where:

– W is a non-empty set of states;
– Rα is a binary relation for each basic action α, including τ ;
– RP is a binary relation for each non-basic process P , inductively built as:

• For looping processes: RP = R∗LP
◦ RTP

• For non-looping processes:
∗ Rα.P , RP1+P2 and RP1|P2 as in definition 9;
∗ Rα.A = Rα ◦ RPA
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It should be noticed that the restriction on the set Cons(P ) and the restriction
on the formation of the defining equations, both presented in the beginning of
the section, together with the definition of the relation RP for looping processes
P based on RLP and RTP make it impossible for the relations to be able to unfold
constants forever. This, together with theorem 4, guarantee that we can fully
define the relation RP in terms of the relations Rα, for any process P , applying
the above rules a finite number of times and that we can build well-founded
proofs by induction on the structure of a process P .

The notions of models and satisfaction are defined analogously to Definitions
10 and 11.

4.2 Proof Theory

The proof theory is similar to the one presented in section 3.2. We consider the
following set of axioms and rules, where p, q and r are proposition symbols and
ϕ and ψ are formulas.

– The axioms (PL) and (K) and the rules (Sub), (MP) and (Gen).
– Axioms for looping processes:

(Rec) 〈P 〉p ↔ 〈TP 〉p ∨ 〈LP 〉〈P 〉p
(FP) (r → ([TP ]¬p ∧ [LP ]r)) ∧ [L′P ](r → ([TP ]¬p ∧ [LP ]r)) → (r → [P ]¬p)

– Axioms for non-looping processes:
(SCCS) The axioms (Pr), (NC) and (PC).
(Cons) 〈α.A〉p ↔ 〈α〉〈PA〉p

The proof of soundness is analogous to the proof of soundness for PDL and
CTL, as all of our axioms are very closely related to axioms for these logics.

Theorem 5 (Completeness). Every consistent formula is satisfiable in a fi-
nite model that respects definition 17.

Proof. See the appendix. ��

5 Final Remarks and Future Work

In this work, we present a PDL-like logic in which the programs are CCS terms
(CCS-PDL). We provide a simple Kripke semantics for it and also give an ax-
iomatization for this logic. We prove the completeness of the axiomatic system
and the finite model property for the logic using a Fischer-Ladner construction.

As a continuation of this work, it would be interesting to study the complexity
of the satisfiability problem for this logic, possibly relating it to the satisfiability
problem for standard PDL.

We would also like to investigate some extension of CCS-PDL to deal with the
restriction operator and a PDL for π-Calculus programs [6]. It would be interest-
ing to develop an automatic theorem prover for CCS-PDL. This would involve,
among other things, efficient algorithmic methods to determine the processes LP

and TP related to a looping process P and to deal with the expansion of parallel
processes.
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A Completeness Proof

Definition 18. Let φ be a formula. We define the formula φ as φ = ψ, if
φ = ¬ψ, or φ = ¬φ, otherwise.

Definition 19 (Fischer-Ladner Closure). Let Γ be a set of formulas. The
Fischer-Ladner Closure of Γ , notation C(Γ ), is the smallest set of formulas that
contains Γ and satisfies the following conditions:

– C(Γ ) is closed under sub-formulas;
– if φ ∈ C(Γ ), then φ ∈ C(Γ );
– For looping processes:

• If 〈P 〉ϕ ∈ C(Γ ), then 〈TP 〉ϕ ∨ 〈LP 〉〈P 〉ϕ ∈ C(Γ ).
– For non-looping processes:

• If 〈α.P 〉ϕ ∈ C(Γ ), then 〈α〉〈P 〉ϕ ∈ C(Γ );
• If 〈α.A〉ϕ ∈ C(Γ ), then 〈α〉〈PA〉ϕ ∈ C(Γ );
• If 〈P1 + P2〉ϕ ∈ C(Γ ), then 〈P1〉ϕ ∨ 〈P2〉ϕ ∈ C(Γ );
• If 〈P1 | P2〉ϕ ∈ C(Γ ), then

∨
P1

α→P ′
1
〈α〉〈P ′1 | P2〉ϕ ∨

∨
P2

α→P ′
2
〈α〉〈P1 |

P ′2〉ϕ ∨
∨

P1
λ→P ′

1

P2
λ→P ′

2

〈τ〉〈P ′1 | P ′2〉ϕ ∈ C(Γ ).

It is not difficult to prove that if Γ is finite, then the closure C(Γ ) is also finite.
We assume Γ to be finite from now on.

Definition 20. Every formula φ that is derivable from the set of axioms and
rules in section 4.2 is called a theorem and denoted as � φ. We say that a formula
φ is consistent iff ¬φ is not a theorem, i.e., iff �� ¬φ and inconsistent otherwise.
A set of formulas Δ = {φ1, . . . , φn} is said to be consistent iff ψ = φ1 ∧ . . . ∧ φn

is consistent.
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Definition 21. A set of formulas A is said to be an atom over Γ if it is a
maximal consistent subset of C(Γ ). The set of all atoms over Γ is denoted by
At(Γ ). We denote the conjunction of all the formulas in an atom A as

∧
A.

Lemma 1. Every atom A ∈ At(Γ ) has the following properties:

1. For every φ ∈ C(Γ ), exactly one of φ and ¬φ belongs to A.
2. For every φ ∧ ψ ∈ C(Γ ), φ ∧ ψ ∈ A iff φ ∈ A and ψ ∈ A.

Proof. This follows immediately from the definition of atoms as maximal con-
sistent subsets of C(Γ ). ��

Lemma 2. If Δ ⊆ C(Γ ) and Δ is consistent then there exists an atom A ∈
At(Γ ) such that Δ ⊆ A.

Proof. We can construct the atom A as follows. First, we enumerate the elements
of C(Γ ) as φ1, . . . , φn. We start the construction making A0 = Δ. Then, for
0 ≤ i < n, we know that

∧
Ai ↔ (

∧
Ai ∧ φi+1) ∨ (

∧
Ai ∧ φi+1) is a tautology

and therefore either Ai ∪ {φi+1} or Ai ∪ {φi+1} is consistent. We take Ai+1 as
the consistent extension. At the end, we make A = An. ��

Corollary 1. If ϕ ∈ C(Γ ) is a consistent formula, then there is an atom A ∈
At(Γ ) such that ϕ ∈ A.

Definition 22 (Canonical model over Γ ). Let Γ be a finite set of formulas.
The canonical model over Γ is the tuple MΓ = (At(Γ ), {SP },V) where, for
all elements p ∈ Φ, we have V(p) = {A ∈ At(Γ ) | p ∈ A} and for all atoms
A, B ∈ At(Γ ),

ASP B iff
∧

A ∧ 〈P 〉
∧

B is consistent .

V is called the canonical valuation and SP the canonical relations, where P is
a CCS process.

Definition 23 (CCS-PDL model over Γ ). The CCS-PDL model over Γ is
the tuple N Γ = (At(Γ ), {RP },V), where RP is defined as Rα = Sα for all basic
processes α and according to definition 17 for all complex processes. V is the
canonical valuation.

If Γ = {ϕ}, we write C(ϕ), At(ϕ), Mϕ and N ϕ instead of C({ϕ}), At({ϕ}),
M{ϕ} and N {ϕ}.

Lemma 3 (Existence Lemma for Basic Processes). Let A be an atom,
and let α be a basic process. Then, for all formulas 〈α〉φ ∈ C(Γ ), 〈α〉φ ∈ A iff
there is a B ∈ At(Γ ) such that ARαB and φ ∈ B.

Proof. (⇒) Suppose 〈α〉φ ∈ A. We can build an appropriate atom B by forcing
choices. Enumerate the formulas in C(Γ ) as φ1, . . . , φn. Define B0 = {φ}. Sup-
pose, as an inductive hypothesis that Bm is defined such that

∧
A∧ 〈α〉

∧
Bm is

consistent, for 0 ≤ m < n. We have that

� 〈α〉
∧

Bm ↔ 〈α〉((
∧

Bm ∧ φm+1) ∨ (
∧

Bm ∧ φm+1)) ,
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thus
� 〈α〉

∧
Bm ↔ (〈α〉(

∧
Bm ∧ φm+1) ∨ 〈α〉(

∧
Bm ∧ φm+1)) .

Therefore, either for B′ = Bm ∪ {φm+1} or for B′ = Bm ∪ {φm+1}, we have that∧
A ∧ 〈α〉

∧
B′ is consistent. We take Bm+1 as the consistent extension. At the

end, we make B = Bn. We have that φ ∈ B and, as
∧

A ∧ 〈α〉
∧

B is consistent,
ASαB, by definition 22, which implies that ARαB.

(⇐): Suppose that there is an atom B such that φ ∈ B and ARαB. Then ASαB
and

∧
A ∧ 〈α〉

∧
B is consistent by definition 22. As φ is one of the conjuncts

of
∧

B,
∧

A ∧ 〈α〉φ is also consistent. As 〈α〉φ is in C(Γ ), it must also be in A,
since A is a maximal consistent subset of C(Γ ). ��

Lemma 4. For all looping processes P , SP ⊆ S′P , where S′P = S∗LP
◦ STP .

Proof. For an atom B ∈ At(Γ ) and a relation S, we denote the set of atoms
{A | ASB} as 〈S〉B. Suppose there are two atoms A, B ∈ At(Γ ) such that
A ∈ 〈SP 〉B, but A /∈ 〈S′P 〉B. Let V = {C ∈ At(Γ ) | C ∈ 〈SP 〉B but C /∈
〈S′P 〉B} ∪ {C ∈ At(Γ ) | C /∈ 〈SP 〉B} and V = At(Γ ) \ V = {C ∈ At(Γ ) | C ∈
〈SP 〉B and C ∈ 〈S′P 〉B}. Thus, A ∈ V . Let r =

∨
{
∧

C | C ∈ V }. It is not
difficult to see that ¬r =

∨
{
∧

C | C ∈ V }.
First, we have that � r → [TP ]¬

∧
B. Otherwise, ¬(r → [TP ]¬

∧
B) ≡ r ∧

〈TP 〉
∧

B is consistent. This means that there is A′ ∈ V such that
∧

A′∧〈TP 〉
∧

B
is consistent. On one hand, this implies, by (Rec), that

∧
A′∧〈P 〉

∧
B is consis-

tent, which means that A′ ∈ 〈SP 〉B. On the other hand, it implies that A′STP B,
which means that A′ ∈ 〈S′P 〉B. These two conclusions contradict the fact that
A′ ∈ V .

Second, we also have that � r → [LP ]r. Otherwise, ¬(r → [LP ]r) ≡ r∧〈LP 〉¬r
is consistent. This means that there are A′ ∈ V and B′ ∈ V such that

∧
A′ ∧

〈LP 〉
∧

B′ is consistent, which implies that A′SLP B′. Since B′ ∈ V , B′SP B and
B′S′P B. On one hand, A′SLP B′ and B′S′P B imply that A′S′P B (*). On the other
hand, A′SLP B′ and B′SP B imply that

∧
A′ ∧ 〈LP 〉〈P 〉

∧
B is consistent, which,

by (Rec), implies that
∧

A′ ∧ 〈P 〉
∧

B is consistent, which means that A′SP B
(**). The conclusions in (*) and (**) contradict the fact that A′ ∈ V .

Taking these two results together, we conclude that � r → ([TP ]¬
∧

B∧[LP ]r).
By (Gen), (PL), (FP) and (MP), � r → [P ]¬

∧
B. But, as A ∈ V , �

∧
A →

r, which means that �
∧

A → [P ]¬
∧

B. This implies that
∧

A ∧ 〈P 〉
∧

B is
inconsistent, contradicting the fact that ASP B. Thus, there cannot be a pair of
atoms A, B ∈ At(Γ ) such that A ∈ 〈SP 〉B, but A /∈ 〈S′P 〉B. ��

Lemma 5. For all processes P , SP ⊆ RP .

Proof. The proof is by induction on the structure of the process P .

– The base case is immediate, for we defined Rα = Sα for all basic processes
α.

– P is a non-looping process:
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• Suppose ASα.P B, that is,
∧

A∧〈α.P 〉
∧

B is consistent. By (Pr),
∧

A∧
〈α〉〈P 〉

∧
B is consistent as well. Using a “forcing choices” argument (as

exemplified in lemma 3), we can construct an atom C such that
∧

A ∧
〈α〉

∧
C and

∧
C∧〈P 〉

∧
B are both consistent. But then, by the inductive

hypothesis, ARαC and CRP B. It follows that ARα.P B as required.
• Suppose ASα.AB, that is,

∧
A ∧ 〈α.A〉

∧
B is consistent. By (Cons),∧

A ∧ 〈α〉〈PA〉
∧

B is consistent as well. Using a “forcing choices” argu-
ment, we can construct an atom C such that

∧
A ∧ 〈α〉

∧
C and

∧
C ∧

〈PA〉
∧

B are both consistent. But then, by the inductive hypothesis,
ARαC and CRPAB. It follows that ARα.AB as required.

• Suppose ASP1+P2B, that is,
∧

A∧〈P1 +P2〉
∧

B is consistent. By (NC),∧
A∧〈P1〉

∧
B is consistent or

∧
A∧〈P2〉

∧
B is consistent. But then, by

the inductive hypothesis, ARP1B or ARP2B. It follows that ARP1+P2B
as required.

• Suppose ASP1|P2B, that is,
∧

A ∧ 〈P1 | P2〉
∧

B is consistent. By (PC),∧
A∧〈α〉〈P ′〉

∧
B is consistent for some basic process α and some process

P ′. Using a “forcing choices” argument, we can construct an atom C such
that

∧
A∧〈α〉

∧
C and

∧
C ∧ 〈P ′〉

∧
B are both consistent. But then, by

the inductive hypothesis, ARαC and CRP ′B. It follows that ARα.P ′B,
which means that ARP1|P2B as required.

– Suppose ASP B, where P is a looping process. By lemma 4, SP ⊆ S′P , where
S′P = S∗LP

◦ STP . By the induction hypothesis, SLP ⊆ RLP and STP ⊆ RTP .
This implies that S′P ⊆ RP , which proves the result. ��

Lemma 6 (Existence Lemma). For all atoms A ∈ At(Γ ) and all formulas
〈P 〉φ ∈ C(Γ ), 〈P 〉φ ∈ A iff there is B ∈ At(Γ ) such that ARP B and φ ∈ B.

Proof. (⇒) Suppose 〈P 〉φ ∈ A. We can build an atom B such that φ ∈ B and
ASP B by “forcing choices”. But, by lemma 5, SP ⊆ RP , thus ARP B as well.

(⇐) We proceed by induction on the structure of P .

– The base case is just the Existence Lemma for basic processes.
– P is a non-looping process:

• Suppose P has the form α.P ′, ARα.P ′B and φ ∈ B. Thus, there is an
atom C such that ARαC and CRP ′B. By the Fischer-Ladner closure con-
ditions, 〈P ′〉φ ∈ C(Γ ), hence by the induction hypothesis, 〈P 〉φ ∈ C.
Similarly, as 〈α〉〈P ′〉φ ∈ C(Γ ), 〈α〉〈P ′〉φ ∈ A. Hence, by (Pr), 〈α.P 〉φ ∈
A.

• Suppose P has the form α.A, ARα.AB and φ ∈ B. Thus, there is an
atom C such that ARαC, CRPAB and φ ∈ B. By the Fischer-Ladner
closure conditions, 〈PA〉φ ∈ C(Γ ), hence by the induction hypothesis,
〈PA〉φ ∈ C. Similarly, as 〈α〉〈PA〉φ ∈ C(Γ ), 〈α〉〈PA〉φ ∈ A. Hence, by
(Cons), 〈α.A〉φ ∈ A.

• Suppose P has the form P1+P2, ARP1+P2B and φ ∈ B. Thus, ARP1B or
ARP2B. By the Fischer-Ladner closure conditions, 〈P1〉φ, 〈P2〉φ ∈ C(Γ ),
hence by the inductive hypothesis, 〈P1〉φ ∈ A or 〈P2〉φ ∈ A. Hence, by
(NC), 〈P1 + P2〉φ ∈ A.
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• Suppose P has the form P1 | P2, ARP1|P2B and φ ∈ B. Thus, ARα.P ′B
for some process α and some process P ′. Then, there is an atom C
such that ARαC and CRP ′B. By the Fischer-Ladner closure conditions,
〈α.P ′〉φ, 〈α〉〈P ′〉φ, 〈P ′〉φ ∈ C(Γ ), hence by the inductive hypothesis,
〈P 〉φ ∈ C and 〈α〉〈P ′〉φ ∈ A. Hence, by (Pr), 〈α.P 〉φ ∈ A and, by
(PC), 〈P1 | P2〉φ ∈ A.

– Suppose P is a looping process, ARP B and φ ∈ B. Then, there is a finite
sequence of atoms C0 . . . Cn such that A = C0RLP C1 . . .Cn−1RLP CnRTP B.
We prove by a sub-induction on n that 〈P 〉φ ∈ Ci, for all i. The desired
result for A = C0 follows immediately.

• Base case: n = 0. This means ARTP B. By the Fischer-Ladner closure
conditions, 〈TP 〉φ ∈ C(Γ ), hence by the inductive hypothesis, 〈TP 〉φ ∈
A. Hence, by (Rec), 〈P 〉φ ∈ A.

• Inductive step: Suppose the result holds for k < n, and that A =
C0RLP C1 . . . RLP CnRTP B. By the inductive hypothesis, 〈P 〉φ ∈ C1. Hence
〈LP 〉〈P 〉φ ∈ A, as 〈LP 〉〈P 〉φ ∈ C(Γ ). By (Rec), 〈P 〉φ ∈ A. ��

Lemma 7 (Truth Lemma). Let N Γ = (At(Γ ), {RP },V) be the CCS-PDL
model over Γ . For all atoms A ∈ At(Γ ) and all formulas ϕ ∈ C(Γ ), N Γ , A � ϕ
iff ϕ ∈ A.

Proof. The proof is by induction on the structure of the formula ϕ.

– φ is a proposition symbol: The proof follows directly from the definition of
V.

– φ = ¬ψ or φ = ψ1 ∧ ψ2: The proof follows directly from lemma 1.
– φ = 〈P 〉ψ:

(⇒) Suppose that N Γ , A � 〈P 〉ψ. Then, there exists A′ ∈ N Γ such that
ARP A′ and N Γ , A′ � ψ. By the induction hypothesis, we know that ψ ∈ A′
and, by the Existence Lemma, we have that 〈P 〉ψ ∈ A.

(⇐) Suppose that 〈P 〉ψ ∈ A. Then, by the Existence Lemma, there is
A′ ∈ N Γ such that ARP A′ and ψ ∈ A′. By the induction hypothesis,
N Γ , A′ � ψ, which implies N Γ , A � 〈P 〉ψ. ��

Theorem 6 (Completeness). Every consistent formula is satisfiable in a fi-
nite model that respects definition 17.

Proof. Let ϕ be a consistent formula. Let C(ϕ) be its closure under the conditions
of definition 19. As ϕ is consistent, by corollary 1, there is an atom A ∈ At(ϕ)
such that ϕ ∈ A. Let N ϕ be the CCS-PDL model over ϕ. Then, by the Truth
Lemma (lemma 7), as ϕ ∈ A, we conclude that N ϕ, A � ϕ, which proves the
theorem. ��



Towards Ontology Evolution in Physics�

Alan Bundy and Michael Chan

School of Informatics,
University of Edinburgh,

Edinburgh, UK
{bundy,mchan}@inf.ed.ac.uk

Abstract. We investigate the problem of automatically repairing incon-
sistent ontologies. A repair is triggered when a contradiction is detected
between the current theory and new experimental evidence. We are work-
ing in the domain of physics because it has good historical records of such
contradictions and how they were resolved. We use these records to both
develop and evaluate our techniques. To deal with problems of inferential
search control and ambiguity in the atomic repair operations, we have
developed ontology repair plans, which represent common patterns of re-
pair. They first diagnose the inconsistency and then direct the resulting
repair. Two such plans have been developed to repair ontologies that dis-
agree over the value and the dependence of a function, respectively. We
have implemented the repair plans in the galileo system and success-
fully evaluated galileo on a diverse range of examples from the history
of physics.

1 Introduction

Most ontologies are built manually for a particular reasoning task. Successful
reasoning depends on striking a compromise between the expressiveness of the
representation and the efficiency of the reasoning process. If either the reasoning
environment or the goals subsequently change, then the reasoning process is
likely to fail because the ontology is no longer well suited to its task.

Many modern applications of automated reasoning need to work in a changing
environment with changing goals. Their reasoning systems need to adapt to these
changes automatically. In particular, their ontologies need to evolve automati-
cally [1]. It is not enough to remove from or add to the beliefs of the ontology. It
is necessary to change its underlying formal language. Our group has pioneered
work in this new area of research. Our techniques involve diagnosis of faults in
an existing ontology and then repairing these faults. They have previously been
implemented and evaluated in the Ontology Repair System (ors) [2].

We are now applying and developing our techniques in the domain of physics
[3]. This is an excellent domain because many of its most seminal advances can
be seen as ontology evolution, i.e., changing the way that physicists view the
world. These changes are often triggered by a contradiction between existing
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theory and experimental observation. These contradictions, their diagnosis and
the resulting repairs have usually been well documented by historians of science,
providing us with a rich vein of case studies for the development and evaluation
of our techniques.

We will use the word ‘ontology’ generically, to refer to any logical theory, i.e.,
not restricted to ontologies in description logic, kif or other logics in which on-
tologies have been traditionally formalised. The physics domain requires higher-
order logic: both at the object-level, to describe things like planetary orbits and
calculus, and at the meta-level, to describe the ontological repair operations. An
ontology consists of two parts: the signature, which declares the functions and
their types, and the theory, which is the set of theorems, defined recursively via
the axioms and the rules of inference.

Our research will progress by composing together a number of diagnosis and
repair operations into what we call repair plans, analysing a wide ranging de-
velopment set of case studies, developing more repair plans and evaluating their
performance on a test set of case studies. We will use this work as a basis to de-
velop a theory of ontology evolution that we hope will also be applicable outwith
the physics domain. We have already experimented with two repair plans, which
we call “Where’s my stuff?” (wms) and “Inconstancy”. In this paper we sum-
marise our progress so far: describing our two repair plans, their implementation
and their application to some seminal events in the history of physics.

2 Related Work

ors evolved first-order ontologies by first diagnosing their faults via the exe-
cution failures of multi-agent plans, then using this diagnosis to guide repairs
to these ontologies. These repairs were not just belief revisions, but changes
to the underlying signatures, e.g., adding or removing function arguments, and
splitting or conflating functions. These signature changes include but go beyond
mere definitional extensions, i.e., adding definitions of new functions in terms of
old ones. Some of the changes automated by both ors and our current system
extend the range of concepts that can be expressed.

There is also related work on repairing inconsistencies in owl ontologies,
for instance [6]. It focuses on strategies for removing inconsistent axioms and
for identifying syntactical modelling errors in owl ontologies to assist users to
rewrite faulty axioms. Our focus, in contrast, is on repairing deeper conceptual
errors in the underlying physical theory, rather than fixing errors in the use of
the owl operators. We are focusing on signature changes rather than removing
or repairing axioms. We are also applying our techniques to higher-order rather
than description logic ontologies. Nevertheless, we will be investigating this and
other related work to identify opportunities for synergy.

More generally, our research differs from previous work on ontology match-
ing by being focused on repairing a single ontology dynamically, automatically
and without access to third party ontologies. It also differs from previous work
on belief revision by being focused on signature changes rather than theory
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changes. However, again we will try to identify opportunities for synergy with
these parallel strands of work.

3 Ontology Repair Plans

Adding arguments to and splitting functions are examples of refinement, in which
ontologies are enriched. Such ontology refinement presents the following tough
challenges:

1. Refinement operations are only partially defined. For instance, when an ad-
ditional argument is added to a function it is not always clear what value
each of its instances should take, or indeed whether any candidate values are
available. When a function is split into two, it is not always clear to which
of the new functions each occurrence of the old one should be mapped.

2. There are combinatorial explosions in both the object-level inference within
the evolving ontology and the meta-level inference required to diagnose and
repair that ontology.

3. To evaluate ors we wanted to compare its evolutionary behaviour to that
of manually executed ontology modifications. For this we needed a series of
versions of such ontologies together with a justification of the modifications
between successive versions. This proved very difficult to obtain: ontology
developers do not usually keep publically accessible development histories1.

The work outlined in this paper addresses these problems in the following
way:

– Problems 1 and 2 are being addressed by developing repair plans. A repair
plan is analogous to a proof plan [5], a generic proof outline that can be used
to guide the search for a proof. Repair plans are generic combinations of
diagnosis and repair operations that guide the ontology evolution process.
By grouping these meta-level operations they trade off completeness against
a dramatic reduction in search. Appendices A and B describe the two repair
plans we have developed to date. In addition, we will develop a theory of
ontology evolution by isolating and generalising the atomic ontology repair
operations arising in our case studies. For instance, since repairs need to
be minimal in order to avoid unmotivated and unnecessary repairs, then a
suitable concept of minimality needs to be defined and our repairs shown
to be minimal with respect to it. Figure 1 outlines one approach we are
currently exploring.

– Problem 3 is being addressed by working in the domain of physics. Some
of the most seminal advances in the development of physics have required
profound ontology evolution. Moreover, the evolutionary process in physics is

1 A rare exception can be found in the cvs records at http://sigmakee.

cvs.sourceforge.net/sigmakee/KBs/. Although, even here the annotations typi-
cally record what was changed but not much about why. We are also working on a
project to re-evaluate ors on some of these cvs records.

http://sigmakee.cvs.sourceforge.net/sigmakee/KBs/
http://sigmakee.cvs.sourceforge.net/sigmakee/KBs/
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To define a concept of minimal repair we are experimenting with extending conservative
extension to changes of signature, namely:

φ ∈ Sig(O) =⇒ (ν(O) � ν(φ) ⇐⇒ O � φ)

where φ ∈ Sig(O) means that φ is a formula in the signature of ontology O and ν(φ)
is the repaired φ in repaired ontology ν(O). In the repair plan in Appendix A on p107
both ν(Ot) and ν(Os) are conservative in this extended sense. Their combination, of
course, is not, since the purpose of the repair is to prevent a contradiction being derived
in the repaired combination.

Fig. 1. Minimal Ontology Repair via Conservative Extensions

very well documented. Detailed accounts are available of: the problems with
the prior ontology, e.g., a contradiction between theory and experiment; the
new ontology; and an account of the reasoning which led to it.

The wms ontology repair plan, described in detail in Appendix A, aims at
resolving contradictions arising when the expected value returned by a function
does not match the observed value. The expected value can be viewed as being
deducible from an existing theory, whereas the observed value is obtained from
some sensory data, which can be collected from empirical experiments. To break
the inconsistency, the conflicting function in the theory is either split into two
parts, visible and invisible, or becomes the visible part of a total function. The
intuition behind this repair is that the discrepancy arose because the function
was not being applied to the same stuff in the theory and the sensory ontologies
- some of the stuff was invisible in one of the ontologies.

The Inconstancy ontology repair plan, described in Appendix B, is triggered
when there is a conflict between the expected independence and the observed
dependence of a function on some variable, i.e., the returned value of a function
unexpectedly varies. To effect the repair, the variable causing the unexpected
variation is first identified and a new, consistent definition for the conflicting
function is then created. The new definition relies on a function relating the old
definition to the varying condition. In our current implementation, this function
is computed using curve fitting techniques.

4 Implementation

Our repair plans have been implemented in the Guided Analysis of Logical Incon-
sistencies Leads to Evolved Ontologies (galileo) system; we chose λProlog [4]
as our implementation language because it provides a polymorphic, higher-order
logic. This is well suited to the representation of the higher-order functions that
occur in both the object-level domain of physics and the meta-level formulae of
the repair plans. It provides higher-order unification to support matching of the
meta-level triggers of the repair plans to the object-level triggering formulae in
the case studies. It facilitates the representation of polymorphic functions such as
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−, < and =. It also provides depth-first search to facilitate inference at both the
object- and meta-levels. These features combines to support rapid prototyping
of the repair plans and their application to the development case studies.

To illustrate the galileo code, the main clause of the wms plan is provided
in Appendix C.

5 Applications to the Development Case Studies

We have applied galileo to the emulation of a small but diverse set of physics
case studies. For instance, wms has been applied to the discovery of latent heat,
an apparent paradox about the lost energy of a bouncing ball, the invention
of dark matter and the speculation of the additional planet Vulcan to explain
an anomaly in the precession of the perihelion of Mercury. Inconstancy has
been applied to the extension of Boyle’s Law to the Gas Law and the adaption
of Newton’s theory of gravity (mond) to explain an anomaly in the rate of
expansion of the Universe. §5.1 and §5.2 outline two of the applications of wms
and §5.3 outlines an application of Inconstancy.

5.1 The Application of wms to the Discovery of Latent Heat

Joseph Black discovered the concept of latent heat around 1750. Wiser and Carey
[7] discuss a period when heat and temperature were conflated, which presented
a conceptual barrier that Black had to overcome before he could formulate the
concept of latent heat. This conflation creates a paradox: as water is frozen it
is predicted to lose heat, but its heat, as measured by temperature, remains
constant. Black had to split the concept of heat into energy and temperature.

The paradox faced by Black can be formalised as follows:

Ot � Heat(H2O,Start(Freeze)) = Heat(H2O,Start(Freeze)) (1)
Os � Heat(H2O,Start(Freeze)) = Heat(H2O,End(Freeze)) (2)
Ot � Heat(H2O,Start(Freeze)) �= Heat(H2O,End(Freeze)) (3)

where H2O is the water being frozen, Freeze is the time interval during which
the freezing takes place, Start returns the first moment of this period and End
the last. (1) comes from the reflexive law of equality, (2) comes from the ob-
served constant temperature during freezing and (3) is deduced from the then
current physical theory that heat decreases strictly monotonically when objects
are cooled.

These formulae match the repair plan trigger (7) in Appendix A with the
following substitution:

{Heat/stuff , 〈H2O,Start(Freeze)〉/s, Heat(H2O,Start(Freeze))/v1,
Heat(H2O,End(Freeze))/v2}

To effect the repair we will define σvis ={Temp/stuff } and σinvis ={LHF/stuff },
respectively, in anticipation of their intended meanings, where LHF can be read
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as the latent heat of fusion. These choices instantiate (8) in Appendix A to:

∀o:obj, t:mom. LHF (o, t) ::= Heat(o, t)− Temp(o, t)

which is not quite what is required, but is along the right lines. Some further
indirect observations of LHF are required to witness its behaviour under different
states of o so that it can be further repaired, e.g., the removal of its t argument.
The Temp part of the new definition needs to be further refined so that its
contribution of energy depends both on temperature and mass. These further
refinements will be the subject of future ontology repair plans.

In the repaired ontologies, since Heat(H2O,Start(Freeze)) is greater than
Heat(H2O,End(Freeze)), the repaired triggering formulae are transformed to:

ν(Ot) � Heat(H2O,Start(Freeze)) = Heat(H2O,Start(Freeze))
ν(Os) � Temp(H2O,Start(Freeze)) = Temp(H2O,End(Freeze))

which breaks the derivation of the detected contradiction, as required.

5.2 The Application of wms to Dark Matter

The evidence for dark matter arises comes from various sources, for instance,
from an anomaly in the orbital velocities of stars in spiral galaxies identified by
Rubin [8]. Given the observed distribution of mass in these galaxies, we can use
Newtonian Mechanics to predict that the orbital velocity of each star should be
inversely proportional to the square root of its distance from the galactic centre
(called its radius). However, observation of these stars show their orbital veloci-
ties to be roughly constant and independent of their radius. Figure 2 illustrates
the predicted and actual graphs. In order to account for this discrepancy, it is
hypothesised that galaxies also contain a halo of, so called, dark matter, which
is invisible to our radiation detectors, such as telescopes, because it does not
radiate, so can only be measured indirectly.

We can trigger the preconditions (7) in Appendix A with the following
formulae:

Ot � λs ∈ Spiral. 〈Rad(s), Orb V el(s)〉 = Graphp (4)
Os � λs ∈ Spiral. 〈Rad(s), Orb V el(s)〉 = Grapha (5)
Ot � Graphp �= Grapha (6)

where Orb V el(s) is the orbital velocity of star s, Rad(s) is the radius of s from
the centre of its galaxy and Spiral is a particular spiral galaxy, represented as
the set of stars it contains. Formula (4) shows the predicted graph, Graphp: the
orbital velocity decreases roughly inversely with the square root of the radius
(see Figure 2). This graph is deduced by Newtonian Mechanics from the observed
distribution of the visible stars in the spiral galaxy. Formula (5) shows the actual
observed orbital velocity graph, Grapha: it is almost a constant function over
most of the values of s (see Figure 2). Note the use of λ abstraction in (4) and
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This diagram is taken from http://en.wikipedia.org/wiki/Galaxy

rotation problem. The x-axis is the radii of the stars and the y-axis is their
orbital velocities. The dotted line represents the predicted graph and the solid
line is the actual graph that is observed.

Fig. 2. Predicted vs Observed Stellar Orbital Velocities

(5) to create graph objects as unary functions. These two graphs are unequal
(6), within the range of legitimate experimental variation.

These three formulae instantiate the trigger preconditions (7) with the fol-
lowing substitution:

{λs ∈ g. 〈Rad(s), Orb V el(s)〉/stuff , 〈Spiral〉/s, Graphp/v1,

Grapha/v2}
Note that the repair plan works perfectly well with higher-order objects as the
values v1 and v2, provided that polymorphic − and �= can be defined as hav-
ing meaning over this data-type: in this case a piecewise subtraction over the
individual values for each star and a fuzzy, negated equality between graphs.

To effect the repair we will define σvis = {Spiralvis/g} and σinvis =
{Spiralinvis/g}, so the instantiation of definition (8) suggested by this triggering
is:

λs ∈ Spiralinvis. 〈Rad(s), Orb V el(s)〉
::= λs ∈ Spiral. 〈Rad(s), Orb V el(s)〉 −

λs ∈ Spiralvis. 〈Rad(s), Orb V el(s)〉
where Spiralvis is the visible part of the galaxy, that can be detected from its
radiation, and Spiralinvis is its dark matter part.

In the repaired ontologies, since Graphp < Grapha, the repaired triggering
formulae are:

ν(Ot) � λs ∈ Spiralvis. 〈Rad(s), Orb V el(s)〉 = Graphp

ν(Os) � λs ∈ Spiral. 〈Rad(s), Orb V el(s)〉 = Grapha

which breaks the previous derivation of a contradiction, as required. Note that,
unlike the latent heat case study, it is the repaired theoretical ontology that

http://en.wikipedia.org/wiki/Galaxy_rotation_problem
http://en.wikipedia.org/wiki/Galaxy_rotation_problem
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formalises the visible stuff and it is the repaired experimental ontology that
formalises the total stuff. This is because Graphp is based on the visible mass
in the spiral and is, therefore, smaller than Grapha.

5.3 The Application of Inconstancy to Modified Newtonian
Mechanics

Another explanation of the anomaly in orbital velocities of stars in spiral galax-
ies is provided by MOdified Newtonian Dynamics (mond), proposed by Moti
Milgrom in 1981 as an alternative to the dark matter explanation. We have
discussed in §5.2 that dark matter is an example of the wms plan. mond is
an example of the Inconstancy plan. This is a good example of how the same
observational discrepancies can trigger different repair plans. Essentially, mond
suggests that the gravitational constant is not a constant, but depends on the
acceleration between the objects on which it is acting2. It is constant until the
acceleration becomes very small and then it depends on this acceleration, which
is the case for stars in spiral galaxies. So, the gravitational constant G can
be repaired by giving it an additional argument to become G(Acc(s)), where
Acc(s) is the acceleration of a star s due to the gravitational attraction between
the star and the galaxy in which it belongs. Acc(s) is the variad and G is the
inconstancy.

To satisfy the preconditions of the Inconstancy plan (10) and (10), we modify
(4), (5), and (6) from §5.2. We want to have G instead of λs ∈ Spiral. 〈Rad(s),
Orb V el(s)〉 on the left-hand-sides of (4) and (5). Similarly, we want to have
the unrepaired representation of the gravitational constant on the right-hand-
side of (4). We know from the law of universal gravitation that the square of
the radius is inversely proportional to the acceleration of the orbiting star due
to gravity, with the product of the gravitational constant and the mass of the
galaxy being the constant of proportionality, i.e., Rad(Si)2 = G×M

Acc(Si)
, where G,

M , and Acc(Si) denote the gravitational constant, the mass of the galaxy, and
the acceleration of the star w.r.t. the galaxy in which it belongs. So, we need to
collect evidence for a variety of stars: Si for 1 ≤ i ≤ n, where Acc(Si) varies from
large, i.e., Si is near the centre of the galaxy, to small, i.e., Si is on the periphery
of the spiral galaxy. The graph shown in Figure 2, therefore, provides us with
sufficient information to relate orbital velocities with accelerations of stars.

The trigger formulae for the Inconstancy plan will then be:

Os(Acc(S1) = A1) � G = M2OV −1(OV (S1),Mass(S1),
λs ∈ Spiral \ {S1}. (Posn(s),Mass(s))) (= G1)

...
...

Os(Acc(Sn) = An) � G = M2OV −1(OV (Sn),Mass(Sn),

2 It can also be presented as breaking of the equivalence of inertial and gravitational
mass, but the varying gravity story fits our purposes better.
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λs ∈ Spiral \ {Sn}. (Posn(s),Mass(s))) (= Gn)
Ot � G ::= 6.67× 10−11

∃i �= j. Ot � Gi �= Gj

where M2OV −1 is the inverse of M2OV , which takes the value of G, the mass
of a star s Mass(s) and the mass distribution of all the remaining stars in the
spiral galaxy based on their positions Posn(s), and calculates the orbital velocity
of s. M2OV −1, therefore, takes the observed orbital velocity of a star s OV (s),
the mass of s and the mass distribution of all the remaining stars in the galaxy
and calculates what value of G would account for the observed orbital velocity
of s.

The formulae above triggers the Inconstancy plan with the following
substitution:

{G/stuff , 〈〉/s, 〈〉/x, 6.67× 10−11/c, Acc/V, 〈Si〉/bi, G1/c1, Gn/cn}

Since G is a constant, both s and x are simply empty vectors.
Following the instructions for repair in Figure B, the variad is given to the

inconstancy by:
ν(G) ::= λs.F (6.67× 10−11, Acc(s))

and the repaired triggering formulae are therefore:

ν(Os(Acc(S1) = A1)) � ν(G)(S1) = M2OV −1(OV (S1),Mass(S1),
λs ∈ Spiral \ {S1}. (Posn(s),Mass(s)))
(= G1)

...
...

ν(Os(Acc(Sn) = An)) � ν(G)(Sn) = M2OV −1(OV (Sn),Mass(Sn),
λs ∈ Spiral \ {Sn}. (Posn(s),Mass(s)))
(= Gn)

ν(Ot) � ν(G) ::= λs.F (6.67× 10−11, Acc(s))

which breaks the derivation of the detected contradiction, as required.
The function F can be determined by finding the best-fit curve for the whole

dataset, in which each data point represents an observed Gi made under a par-
ticular condition Acc(Si) = Ai. F is a reasonable approximation only if a fairly
large number of observations of Gi for a wide range of accelerations of stars
Acc(Si) are analysed. If F is a correct and complete approximation of ν(G),
then F (6.67× 10−11, Acc(s)) returns the unrepaired value 6.67× 10−11 if a star
s has an acceleration much greater than 1.2× 10−10ms−2 (close to the centre of
the galaxy). If s has an acceleration that is much less than 1.2×10−10ms−2 (near
the periphery of the galaxy), the value returned will be greater than 6.67×10−11

and proportional to Acc(s)2 ×Rad(s)2, where Rad(s) is the radius of the star’s
orbit.
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6 Conclusion

Our proposed research programme is still in its early stages, although initial
progress is promising. We have identified two of the five to ten general-purpose
repair plans we seek, implemented them and applied them to the development
set of case studies. Although small, this development set is satisfyingly diverse.
Our current initial ontologies are ad hoc. We plan to develop more principled
ones. Our prototype implementation requires the triggering formulae to be in
just the right format, whereas later work will explore how to derive formulae
meeting this format. This will raise difficult issues of search control. We need to
evaluate our existing and future repair plans on a wider test set. We will require
further investigation into the history of physics to identify both additional plans
and both development and test case studies. Our theory of ontology evolution
is in its infancy, although our extended notion of conservative extension is a
promising start.
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an experiment. Suppose these two ontologies disagree over the value of some
function stuff 3 when it is applied to a vector of arguments s of type τ . stuff (s)
might, for instance, be the heat content of a block of ice or the orbit of a planet.

Trigger: If stuff (s) has two different values in Ot and Os then the following for-
mula will be triggered, identifying a potential contradiction between theory
and experiment.

Ot � stuff (s) = v1, Os � stuff (s) = v2, Ot � v1 �= v2 (7)

where O � φ means that formula φ is a theorem of ontology O. Below we
deal with the case where v1 > v2. The other case is symmetric, with the
roles of Ot and Os reversed.

Split Stuff: The repair is to split stuff into three new functions: visible stuff,
invisible stuff and total stuff, recycling the original name for total stuff. Then
we create a definition of invisible stuff in terms of total and visible stuff.

∀s:τ . stuff σinvis(s) ::= stuff (s)− stuff σvis(s) (8)

When stuff is a constant then σvis
4 just replaces it with new constant stand-

ing for the visible stuff; when stuff is compound the replacement is more
complex, but still automatable. Similar remarks hold for σinvis.

Create New Axioms: Let ν(Ot) and ν(Os) be the repaired ontologies. We
calculate the axioms of the new ontologies in terms of those of the old as
follows:

Ax(ν(Ot)) ::= {∀s:τ . stuff σinvis(s) ::= stuff (s)− stuff σvis(s)} ∪
Ax(Ot)

Ax(ν(Os)) ::= {φ{stuff /stuff σvis} | φ ∈ Ax(Os)}

i.e., the axioms of ν(Ot) are the same as for Ot except for the addition of
the new definition; the axioms of ν(Os) are the same as for Os except for
the renaming of the original stuff to the visible stuff.

Note that the contradiction has now disappeared but the theorems of the two
ontologies are preserved up to renaming and the logical consequences arising
from adding the new stuff definition (8). Note also, that =, > and − have to be
polymorphic, i.e., apply to a variety of types.

Having hypothesised the existence of some hitherto invisible (i.e., not de-
tectable by current instruments) stuff, then a natural next question is to try to
develop an instrument that can detect it, even if indirectly.

3 stuff is a polymorphic, higher-order variable ranging over functions in physics.
4 σvis and σinvis are replacements. These resemble higher-order substitutions, except

that constants, as well as variables, may be replaced with terms.
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B The Inconstancy Ontology Repair Plan

Suppose that different sensory ontologies give distinct values for function stuff (s)
in different circumstances. Suppose function V (s, b), where b contains variables
distinguishing among these circumstances, returns distinct values in each of these
circumstances, but is not one of the parameters in s, i.e., stuff (s) does not de-
pend on V (s, b). We will call stuff (s) the inconstancy and V (s, b) the variad.
The Inconstancy repair plan establishes a relationship between the variad V (b)
and the inconstancy stuff (s). The inconstancy might, for instance, be the grav-
itational constant G and the variad might be the acceleration of an orbiting
star due to the gravity, which is suggested by MOdified Newtonian Dynamics
(mond).

Trigger: If stuff (s) is measured to take different values in different circum-
stances, then the following trigger formulae will be matched.

Os(V (s, b1) = v1) � stuff (s) = c1
...

... (9)
Os(V (s, bn) = vn) � stuff (s) = cn,

Ot � stuff (x) ::= c(x), ∃i �= j.Ot � ci �= cj (10)

where x can be instantiated by s, Os(V (s, bi) = vi) is the sensory ontology
containing observations made under the condition that V (s, bi) = vi and
V (s, b) is not an existing argument of stuff (s), i.e., V (s, b) /∈ s.

Add Variad: The repair is to change the signature of all the ontologies to relate
the inconstancy, stuff (x), to the variad, V (x,y):

ν(stuff ) ::= λy,x. F (c(x), V (x,y)) (11)

where F is a new function, whose value we will seek to determine by curve
fitting against the data from the sensory ontologies.

Create New Axioms: We calculate the axioms of the new ontologies in terms
of those of the old as follows:

Ax(ν(Os(V (s, bi) = vi))) ::= {φ{stuff /ν(stuff )(bi)} |
φ ∈ Ax(Os(V (s, bi) = vi))}

Ax(ν(Ot)) ::= {φ{stuff /ν(stuff )(y)} |
φ ∈ Ax(Ot) \ {stuff (x) ::= c(x)}} ∪
{ν(stuff ) ::= λy,x. F (c(x), V (x,y))}

i.e., the axioms of ν(Ot) and the ν(Os(V (s, bi) = vi)) are the same as for
Ot and Os(V (s, bi) = vi) except for the replacement of the old stuff with
ν(stuff ) and the replacement of the definition of stuff (x) by the definition
of ν(stuff (x)) in ν(Ot).
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To discover the meaning of the function F , we follow the traditional of Lang-
ley’s bacon program [9] by using curve fitting. The Os(V (s, bi) = vi) ontologies
provide a useful collection of equations: F (c(s), V (s, bi)) = ci for i = 1, . . . , n.
Curve fitting techniques, e.g., regression analysis, are applied to these equations
to approximate a definition of F . This hypothesis can then be tested by creat-
ing additional observations Os(V (s, bj) = vj), for new values of V (s, bj), and
confirming or refuting the hypothesis.

C Example Code

Here is the main clause5 of the wms plan.

repair O1 O2 NA1 NA2 :-
% Repair triggered. Find stuff, args and parity
wms_trigger O1 O2 S L P,
% Pick replaced stuff from S or L
choose S L Tot,
% Calculate total, visible and invisible stuff
newstuff S L Tot STot SVis SInvis,
% Get original axioms
axioms O1 A1,
% of both ontologies
axioms O2 A2,
% Flip to find opposite parity
flip P FP,
% Change both sets of axioms
change P O1 A1 STot SVis SInvis NA1,
change FP O2 A2 STot SVis SInvis NA2.

O1 and O2 are the input initial theoretical and experimental ontologies (but which
is which depends on the parity P). NA1 and NA2 are their output repaired axioms.
wms trigger checks that the triggering formula (7) is matched and returns the
instantiations of stuff , its list of arguments and a parity according to whether
v1 > v2 or v1 < v2. choose picks a candidate Tot to be replaced in σvis and
σinvis, and newstuff uses these replacements to calculate the new total, visible
and invisible stuff . The old axioms are then found by axioms and repaired into
the new axioms by change.

5 Confusingly, λProlog uses the convention that words representing variables start
with upper-case letters and constants with lower-case, which is the inverse of the
standard mathematical convention we have used for our mathematical formula.
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Abstract. Nominal techniques were introduced to represent in a simple
and natural way systems that involve binders. The syntax includes an
abstraction operator and a primitive notion of name swapping. Nominal
matching is matching modulo α-equality, and has applications in pro-
gramming languages and theorem proving, amongst others. In this paper
we describe efficient algorithms to check the validity of equations involv-
ing binders, and also to solve matching problems modulo α-equivalence,
using the nominal approach.
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1 Introduction

The notion of a binder is ubiquitous in computer science. Programs, logic for-
mulas, and process calculi, are some examples of systems that involve binding.
Program transformations and optimisations, for instance, are defined as oper-
ations on programs, and therefore work uniformly on α-equivalence classes. To
formally define a transformation rule acting on programs, we need to be able
to distinguish between free and bound variables, and between meta-variables of
the transformation rule and variables of the object language. We also need to be
able to test for α-equivalence, and we need a notion of matching that takes into
account α-equivalence.

Nominal techniques were introduced to represent in a simple and natural way
systems that include binders [7,10,11]. The nominal approach to the representa-
tion of systems with binders is characterised by the distinction, at the syntactical
level, between atoms (or object-level variables), which can be abstracted (we use
the notation [a]t, where a is an atom and t is a term), and meta-variables (or
just variables), which behave like first-order variables but may be decorated with
atom permutations. Permutations are generated using swappings (e.g. (a b) · t
means swap a and b everywhere in t). For instance, (a b)·λ[a]a = λ[b]b, and
(a b)·λ[a]X = λ[b](a b)·X (we will introduce the notation formally in the next
section). As shown in this example, permutations suspend on variables. The idea
is that when a substitution is applied to X in (a b)·X , the permutation will be
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applied to the term that instantiates X . Permutations of atoms are one of the
main ingredients in the definition of α-equivalence for nominal terms.

Nominal terms [12] can be seen as trees, built from function symbols, tuples
and abstraction term-constructors; atoms and variables are leaves. We can define
by induction a freshness relation a#t (read “the atom a is fresh for the term
t”) which roughly corresponds to the notion of a not occurring unabstracted
in t. Using freshness and swappings we can inductively define a notion of α-
equivalence of terms. Nominal unification is the problem of deciding whether
two nominal terms can be made α-equivalent by instantiating their variables. It
is a generalisation of the unification problem for first-order terms [1], and has the
same applications in rewriting [5], logic programming [3], etc. Urban, Pitts and
Gabbay [12] showed that nominal unification is decidable, and gave an algorithm
to find the most general solution to a nominal unification problem, if one exists.

In this paper we study a simpler version of the problem —nominal matching—
that has applications in functional programming, rewriting and meta program-
ming amongst others. In a matching problem s ≈α t, t is ground (i.e., it has
no variables), or, more generally, it has variables that cannot be instantiated.1

When the term t is ground we say that the matching problem is ground. The
left-hand side of a matching problem s ≈α t is called a pattern, and may have
variables occurring multiple times. When each variable occurs at most once in
patterns we say that the matching problem is linear. We present an efficient al-
gorithm that can be used to solve both linear and non-linear matching problems
modulo α, as well as ground and non-ground problems. An algorithm to test
α-equivalence of nominal terms (ground or non-ground) can be easily derived.

The complexity of the algorithms depends on the kind of problem to be solved;
it is given in the table below:

Case Alpha-equivalence Matching
Ground linear linear

Non-ground and linear log-linear log-linear
Non-ground and non-linear log-linear quadratic

We have implemented the algorithms using OCAML [9], the implementation
is available from: www.dcs.kcl.ac.uk/staff/maribel/CANS. We give sample
benchmarks in the Appendix (Section 6), for more details see the website above.

In functional programming applications, matching problems are ground and in
this case our algorithm is linear in time, as indicated in the first line of the table
above. To our knowledge, this is the only available nominal matching algorithm
with this complexity.

We are currently deploying the algorithms in a rewriting tool that can be used
to specify equational theories including binders in the nominal style (see [6, 4]),
and to evaluate functions working on data structures that include binding. In
future, we hope to be able to extend the implementation techniques discussed

1 These variables may have suspended permutations.
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in this paper to solve nominal unification problems. The complexity of nominal
unification is still an open problem.

2 Background

Let Σ be a denumerable set of function symbols f , g, . . . ; X be a denumerable
set of variablesX,Y, . . . (representing meta-level variables); andA be a denumer-
able set of atoms a, b, . . . (representing object-level variables). We assume thatΣ,
X and A are pairwise disjoint. A swapping is a pair of (not necessarily distinct)
atoms, written (a b). Permutations π are lists of swappings, generated by the
grammar: π ::= Id | (a b) ◦ π. We call Id the identity permutation and write
π−1 for the permutation obtained by reversing the list of swappings in π. We de-
note by π ◦π′ the permutation containing all the swappings in π followed by those
in π′. A pair π·X of a permutation π and a variable X is called a suspension.

Nominal terms, or just terms for short, over Σ,X ,A are generated by the
grammar: s, t ::= a | π·X | (s1, . . . , sn) | [a]s | f t.

A term is ground if it has no variables; V (t) denotes the set of elements of
X that occur in t. We refer the reader to [12, 5] for more details and examples
of nominal terms.

We can apply permutations and substitutions on terms, denoted π·t and
t[X �→ s] respectively. Permutations act top-down and accumulate on variables
whereas substitutions act on variables. More precisely, π·t is defined by induc-
tion: Id·t = t and ((a b) ◦ π)·t = (a b)·(π·t), where

(a b)·a = b (a b)·b = a (a b)·c = c if c �∈ {a, b}
(a b)·(π·X) = ((a b) ◦ π)·X (a b)·(f t) = f(a b)·t

(a b)·[n]t = [(a b)·n](a b)·t (a b)·(t1, . . . , tn) = ((a b)·t1, . . . , (a b)·tn)

In the sequel we abbreviate Id·X as X when there is no ambiguity.
A substitution is generated by the grammar: σ ::= Id | [X �→ s]σ. We write

substitutions postfix and write ◦ for composition of substitutions: t(σ ◦ σ′) =
(tσ)σ′. We define the instantiation of a term t by a substitution σ by induction:
t Id = t and t[X �→ s]σ = (t[X �→ s])σ where

a[X �→ s] = a (t1, . . . , tn)[X �→ s] = (t1[X �→ s], . . . , tn[X �→ s])
([a]t)[X �→ s] = [a]t[X �→ s] (ft)[X �→ s] = f(t[X �→ s])

(π·X)[X �→ s] = π·s (π·Y )[X �→ s] = π·Y
Constraints have the form: a#t or s ≈α t, where # is the freshness rela-

tion between atoms and terms, and ≈α denotes alpha-equality. A set Pr of
constraints is called a problem. Intuitively, a#t means that if a occurs in t then
it must do so under an abstractor [a]-. For example, a#b, and a#[a]a but not
a#a. We sometimes write a, b#s instead of a#s, b#s, or write A#s, where A is
a set of atoms, to mean that all atoms in A are fresh for s.

The following set of simplification rules from [12], acting on problems, can
be used to check the validity of α-equality constraints (below ds(π, π′) is an
abbreviation for {n | π·n �= π′·n}).
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a#b, Pr =⇒ Pr
a#fs, Pr =⇒ a#s, Pr

a#(s1, . . . , sn), P r =⇒ a#s1, . . . , a#sn, P r
a#[b]s, Pr =⇒ a#s, Pr
a#[a]s, Pr =⇒ Pr
a#π·X,Pr =⇒ π-1·a#X,Pr π �= Id

a ≈α a, Pr =⇒ Pr
(l1, . . . , ln) ≈α (s1, . . . , sn), P r =⇒ l1 ≈α s1, . . . , ln ≈α sn, P r

fl ≈α fs, Pr =⇒ l ≈α s, Pr
[a]l ≈α [a]s, Pr =⇒ l ≈α s, Pr
[a]l ≈α [b]s, Pr =⇒ l ≈α (a b)·s, a#s, Pr

π·X ≈α π′·X,Pr =⇒ ds(π, π′)#X,Pr

Given a problem Pr, we apply the rules until we get an irreducible problem, i.e.
a normal form. If only a set Δ of constraints of the form a#X are left, then
the original problem is valid in the context Δ (i.e., Δ 	 Pr), otherwise it is not
valid. Thus, a problem such as X ≈α a is not valid, since it is irreducible. How-
ever, X can be made equal to a by instantiation (i.e., applying a substitution);
we say that this constraint can be solved. If we impose the restriction that in a
constraint s ≈α t the variables in t cannot be instantiated and the variables in
left-hand sides are disjoint from the variables in right-hand sides, then we obtain
a nominal matching problem. If we require s to be linear (i.e., each variable
occurs at most once in s), we obtain a linear nominal matching problem.

A most general solution to a nominal matching problem Pr is a pair (Δ,σ)
of a freshness context and a substitution, obtained from the simplification rules
above, enriched with an instantiating rule labelled with substitutions:

π·X ≈α u, Pr X �→π
-1·u=⇒ Pr[X �→ π-1·u]

Note that there is no need to do an occur-check because left-hand side vari-
ables are distinct from right-hand side variables in a matching problem.

3 The Algorithm

The transformation rules given in Section 2 create permutations. Polynomial
implementations of the nominal unification algorithm [2] rely on the use of lazy
permutations: permutations are only pushed down a term when this is needed
to apply a transformation rule. We will use this idea, but, since lazy permutations
may grow (they accumulate), in order to obtain an efficient algorithm we will
devise a mechanism to compose the swappings eagerly. The key idea is to work
with a single current permutation, represented by an environment.

Definition 1. Let s and t be terms, π be a permutation and A be a finite set of
atoms. An environment ξ is a pair (π,A). We denote by ξπ the permutation
(resp. ξA the set of atoms) of an environment. We write s ≈α ξ♦t to represent
s ≈α ξπ·t, ξA # t, and call s ≈α ξ♦t an environment constraint.
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Definition 2. An environment problem Pr is either ⊥ or has the form
s1 ≈α ξ1♦t1, . . . , sn ≈α ξn♦tn, where si ≈α ξi♦ti (1 ≤ i ≤ n) are environ-
ment constraints. We will sometimes abbreviate it as (si ≈α ξi♦ti)n1 .

The problems defined in Section 2 will be called standard to distinguish them
from environment problems (standard problems have no environments). The
standard form of an environment problem is obtained by applying as many
times as possible the rule: s ≈α ξ♦t =⇒ s ≈α ξπ·t, ξA # t. We denote by [[Pr]]
the standard form of an environment problem Pr.

This rule is terminating because it consumes a ♦ each time, without creating
any. There is no critical pair so the system is locally confluent and because it
terminates it is confluent [8]. Therefore the standard form of an environment
problem exists and is unique, justifying the notation [[Pr]].

The solutions of an environment problem are the solutions of its standard
form (see Section 2). A problem ⊥ has no solutions. Two environment prob-
lems are equivalent if their standard forms are equivalent, i.e., have the same
solutions.

Standard problems are translated into environment problems in linear time:
s ≈α t is encoded as s ≈α ξ♦t where ξ = (Id, ∅) and A # t is encoded as
t ≈α ξ♦t where ξ = (Id, A). In the sequel we restrict our attention to checking
α-equivalence constraints and solving matching problems. In the latter case,
in environment constraints s ≈α ξ♦t, the term t will not be instantiated and
variables in s and t are disjoint. If right-hand sides t are ground terms, we will
say that the problem is ground, and non-ground otherwise.

3.1 Core Algorithm

The algorithms to check α-equivalence constraints and to solve matching prob-
lems will be built in a modular way. The core module is common to both algo-
rithms; only the final phase will be specific to matching or α-equivalence. There
are four phases in the core algorithm. We denote by Pr

c
the result of applying

the core algorithm on Pr.

Phase 1. The input is an environment problem Pr = (si ≈α ξi♦ti)ni , that we
reduce using the following transformation rules, where a, b could be the same
atom and in the last rule ξ′ = ((a ξπ ·b) ◦ ξπ, (ξA ∪ {ξ−1

π ·a}) \ {b}).

Pr, a ≈α ξ♦t =⇒
{
Pr if a = ξπ·t and t �∈ ξA
⊥ otherwise

Pr, (s1, . . . , sn)≈α ξ♦t =⇒
{
Pr, (si ≈α ξ♦ui)n1 if t = (u1, . . . , un)
⊥ otherwise

Pr, f s ≈α ξ♦t =⇒
{
Pr, s ≈α ξ♦u if t = f u

⊥ otherwise

Pr, [a]s ≈α ξ♦t =⇒
{
Pr, s ≈α ξ′♦u if t = [b]u
⊥ otherwise
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The environment problems that are irreducible for the rules above will be
called phase 1 normal forms or ph1nf for short.

Proposition 1 (Phase 1 Normal Forms). The normal forms for phase 1
rules are either ⊥ or (πi·Xi ≈α ξi♦si)n1 where si are nominal terms.

Phase 2. This phase takes as input an environment problem in ph1nf, and moves
the permutations to the right-hand side. More precisely, given a problem in
ph1nf, we apply the rule:

π·X ≈α ξ♦t =⇒ X ≈α (π−1·ξ)♦t (π �= Id)

where π−1·ξ = (π−1 ◦ ξπ, ξA). Note that π−1 applies only to ξπ here, because
π·X ≈α ξ♦t represents π·X ≈α ξπ ·t, ξA#t.

If the problem is irreducible (i.e., it is a normal form for the rule above), we
say it is a phase 2 normal form, or ph2nf for short.

Proposition 2 (Phase 2 Normal Forms). Given a ph1nf problem, it has a
unique normal form for the rule above, and it is either ⊥ or a problem of the
form (Xi ≈α ξi♦ti)n1 , where the terms ti are standard nominal terms.

Phase 3. In the phases 1 and 2 we deal with≈α constraints. Phase 3 takes a ph2nf
and simplifies freshness constraints, by propagating environments over terms.
Since the input is a problem in ph2nf, each constraint has the form X ≈α ξ♦t.
We reduce it with the following rewrite rules, which propagate ξ over t and deal
with problems containing ⊥ (denoted Pr[⊥]):

ξ♦a =⇒
{
ξπ ·a a �∈ ξA
⊥ a ∈ ξA

ξ♦f t =⇒ f (ξ♦t)
ξ♦(t1, . . . , tj) =⇒ (ξ♦ti)j1

ξ♦ [a]s =⇒ [ξπ ·a]((ξ \ {a})♦s)
ξ♦(π·X) =⇒ (ξ ◦ π)♦X
Pr[⊥] =⇒ ⊥

where ξ \ {a} = (ξπ , ξA \ {a}) and ξ ◦ π = ((ξπ ◦ π), π−1(ξA)).
These rules move environments inside terms, so formally we need to extend the

definition of nominal term, to allow us to attach an environment at any position
inside the term. We omit the definition of terms with suspended environments,
and give just the grammar for the normal forms, which may have environments
suspended only on variable leaves:

Definition 3. The language of normal environment terms is defined by:

Tξ = a | f Tξ | (Tξ, . . . , Tξ) | [a]Tξ | ξ♦X
Proposition 3 (Phase 3 Normal Forms - ph3nf). The normal forms for
this phase are either ⊥ or (Xi ≈α ti)n1 where ti ∈ Tξ.
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Phase 4. This phase computes the standard form of a ph3nf:

X ≈α C[ξ♦X ′] =⇒ X ≈α C[ξπ ·X ′] , ξA # X ′

Proposition 4 (Phase 4 Normal Forms - ph4nf). If we normalise a ph3nf
using the rule above, we obtain either ⊥ or (Xi ≈α ui)i∈I , (Aj # Xj)j∈J where
ui are nominal terms and I, J may be empty.

The core algorithm terminates, and preserves the set of solutions. Since all the
reduction rules, except the rule dealing with ⊥, are local (i.e. only modify one
constraint), the result of applying the core algorithm to a set of constraints
is the union of the results obtained for each individual constraint (assuming
⊥, P r ≡ ⊥) .

3.2 Checking the Validity of α-Equivalence Constraints

To check that a set Pr of α-equivalence constraints is valid, we first run the core
algorithm on Pr and then reduce the result Pr

c
by the following rule:

(α) Pr , X ≈α t =⇒
{
Pr , supp(π) # X if t = π·X
⊥ otherwise

where supp(π) is the support of π: supp(π) = {a | π·a �= a}.
Since this rule is terminating (each application consumes one ≈α-constraint)

and there are no critical pairs, it is confluent [8], therefore normal forms exist
and are unique. Pr

≈α denotes the normal form of Pr
c

by the rule above.

Proposition 5 (Normal Forms Pr
≈α). Pr

≈α is either ⊥ or (Ai # Xi)n1 .

Proposition 6 (Correctness). If Pr
≈α is ⊥ then Pr is not valid. If Pr

≈α

is (Ai # Xi)n1 then Pr
≈α 	 Pr.

If the left-hand sides of ≈α-constraints in Pr are ground, then Pr
c

= Pr
≈α ;

rule (α) is not necessary in this case.

3.3 Solving Matching Problems

To solve a matching problem Pr, we first run the core algorithm on Pr and then
if the problem is non-linear we normalise the result Pr

c
by the following rule:

(?≈) Pr, X ≈α s , X ≈α t =⇒
{
Pr , X ≈α s , s ≈α t ≈α if s ≈α t ≈α �= ⊥
⊥ otherwise

This rule is terminating: each reduction consumes at least one ≈α-constraint,
and the algorithm computing Pr

≈α is also terminating. Pr ?≈ denotes a normal
form of Pr

c
by the rule (?≈).
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Proposition 7 (Normal Forms Pr ?≈). If we normalise Pr
c

using the rule
above, we obtain either ⊥ or (Xi ≈α si)n1 , (Ai # Xi)m1 where si are standard
terms, all Xi in the equations (Xi ≈α si)n1 are different variables and ∀i, j : Xi �∈
V(sj).

A problem of the form (Xi ≈α si)n1 where all Xi are distinct variables and
Xi �∈ V(sj) is the coding of an idempotent substitution σ. (Ai # Xi)n1 is a
freshness context Δ. Thus, the result of the algorithm is either ⊥ or a pair
(σ,Δ) of a substitution and a freshness context.

Proposition 8 (Correctness). Pr ?≈ is a most general solution of the match-
ing problem Pr.

4 Implementation

Coding the problem. Terms are represented as trees. We code ξ♦t by attaching
ξ to the root of t. Environment constraints are represented as pairs of trees,
and freshness constraints as a pair of a set of atoms and a variable. Problems
are represented as lists of constraints.

Avoiding environment creation in the core algorithm. Instead of running each
phase in turn, we combine them to have a local reduction strategy: we fully
reduce one constraint into ph4nf before reducing other constraints.

Each rule in the algorithm involves at most one environment, obtained either
by copying or modifying another one. Instead of copying environments (in the
case of tuples), we will share them. Updates in the current environment will,
because of sharing, affect all the constraints where this environment is used.
However, thanks to our local reduction strategy, none of these constraints will
be reduced until the current constraint is in ph4nf (and then it will not use
any environment). At this point, by reversing the environment to its original
state, we can safely reduce the other constraints. Therefore, we keep track of
the operations we made in the environment, fully reduce the current constraint,
and then reverse the operations before reducing another constraint.

Permutations and sets. We code atoms as integers, and permutations (resp. sets)
as mutable arrays or as functional maps of atoms (resp. booleans) indexed by
atoms such that the value at the index a is the image of a by the permutation
(resp. the boolean indicating whether a is in the set or not).

On one hand, mutable arrays have the advantage that they can be accessed
and updated in constant time, but are destructive so we may need to copy them
sometimes (an operation that is linear in time and space in their size). On the
other hand, an access/update on functional maps is logarithmic in time, but
since updates are not destructive we do not need to copy them.

We will use either mutable arrays or functional maps depending on the kind
of problem to be solved:
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Case Alpha-equivalence Matching

Ground mutable arrays mutable arrays
Non-ground and linear functional maps functional maps

Non-ground and non-linear functional maps mutable arrays

Note that when the problem is ground, phase 4 is not needed in the core
algorithm, and therefore we never need to display permutations or freshness
constraints. Since in this case we only need to access and update the environment,
arrays are more efficient. With linear, non-ground problems, we need phase 4,
and the cost is quadratic using arrays, but log-linear using functional maps. We
will discuss the non-linear case in Section 5.

Since we often need the inverse and the support of a permutation, when we
create a permutation we compute at the same time its inverse and its support
and keep them in the same tuple. This can be done in linear time with arrays
and in log-linear time with maps.

Implementing the algorithms. The implementation of the core algorithm is es-
sentially a traversal of the data structure representing the input problem Pr0,
propagating the environment using the techniques above. The result is a list
Pr0

c
of constraints in ph4nf. The α-equivalence algorithm then takes each ≈α-

constraint in the list Pr0
c

and reduces it with (α). The matching algorithm
applies the rule (?≈): it traverses the list to take for each variable X the con-
straint X ≈α s with minimal s (we define the size of s below), and store S[X ] = s
in an array S indexed by variables. Then the algorithm traverses the list again
applying the rule Rl-Check-Subst:

Pr , X ≈α t =⇒
{
Pr , S[X ] ≈α t ≈α if S[X ] ≈α t ≈α �= ⊥
⊥ otherwise

and S[X ] ≈α t ≈α is computed using arrays.

5 Complexity

Atoms are coded as integers, as explained above. Let MA0 be the maximum
atom in A0 (the set of atoms occurring in the input problem Pr0). Let |t|n be
the number of nodes in the tree representing t. Finally, let MV(t) be the multiset
of the occurrences of variables in t.

Core algorithm. Below we analyse the cost of the algorithm.

Definition 4. The size of the problem s ≈α ξ♦t, written |s ≈α ξ♦t|, is defined
as |s ≈α ξ♦t| = |s| + |ξ| + |t| where |ξ| = 2 × |ξπ| + |ξA|, |ξπ| (resp. |ξA|) is
the size of the array/map representing it, and |t| is defined by: |a| = |X | = 1,
|f t| = 1+|t|, |(t1, . . . , tj)| = 1+|t1|+. . . |tj |, | [a]s| = 1+|s| and |π·X | = 1+|π|.



120 C. Calvès and M. Fernández

Proposition 9. The core algorithm is linear in the size of the initial problem
Pr0 in the ground case, using mutable arrays. In the non-ground case, it is log-
linear using functional maps and ϑ(|s ≈α t|+ |MA0 |× |t|n) using mutable arrays.

The idea of the proof is that the core algorithm is essentially a traversal of the
data structure representing the problem. Phases 1 to 3 are trivially linear with
arrays and log-linear with functional maps. Phase 4 is done in ϑ(|MA0 |) with
functional maps, and ϑ(|MA0 | × |t|n) with arrays.

Alpha-equivalence. To check the validity of an ≈α-constraint, after running the
core algorithm we have to normalise the problem using the rule (α), as described
in Section 3.2. If the right-hand sides of ≈α-constraints are ground, the core
algorithm is sufficient and it is linear. Otherwise, each application of the rule
(α) requires to know the support of a permutation, which we do because supports
are always created with permutations and maintained when they are updated.
Thanks to the use of functional maps, the support is copied in constant time
when the permutation is copied, therefore the algorithm is also log-linear in the
size of the problem in the non-ground case.

Matching. The algorithm to solve matching constraints consists of the core al-
gorithm, followed by a normalisation phase (using rule ?≈, see Section 3.3) that
deals with variables occurring multiple times in the pattern. In the case of linear
matching this is not needed – the core algorithm is sufficient.

In Section 4 we discussed the implementation of the rule ?≈ using an array S
indexed by variables and the rule Rl-Check-Subst. The construction of S requires
the traversal of subterms of the term s and every term in the output of the core
algorithm. This is done in time proportional to the size of the output of the core
algorithm. At worst, the size is |MA0 |×MV(t)+ |s ≈α t| because phase 4 can add
a suspended permutation and freshness constraints on every variable occurring
in t. Therefore the output can be quadratic in the size of the input.

Then Rl-Check-Subst will compute S[Xi] ≈α ti ≈α for each constraint Xi ≈α
ti in the result of the core algorithm. Phase 1 to 3 are linear in its size and phase 4
has a complexity ϑ(|MA0 |×MV(ti)), hence at worst quadratic in time in the size
of the input problem. The worst case complexity arises when phase 4 suspends
permutations on all variables. On the other hand, if the input problem already
has in each variable a permutation of size |MA0 | (i.e. variables are ’saturated’
with permutations), then, since permutations cannot grow, the α-equivalence
and matching algorithms are linear even using arrays. Note that the represen-
tation of a matching problem or an α-equivalence problem using higher-order
abstract syntax does saturate the variables (they have to be applied to the set
of atoms they can capture). The table below summarises the results:

Case Alpha-equivalence Matching
Ground linear linear

Non-ground and linear log-linear log-linear
Non-ground and non-linear log-linear quadratic
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6 Benchmarks

The algorithms described above to check α-equivalence and to solve ground
matching problems have been implemented in OCAML [9], using arrays. In
Figure 1, we show benchmarks generated by building random solvable ground
problems (i.e., problems that do not lead to ⊥) and measuring the time taken
by the α-equivalence and matching algorithms to give the result (marked as �

and + in the graph)2.
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Fig. 1. Benchmarks

7 Conclusions

We described an algorithm to solve matching problems modulo α-equivalence
which is linear time and space when the right-hand side terms are ground. Match-
ing modulo α-equivalence has numerous applications, in particular, in the design
of functional programming languages that provide constructs for declaring and
manipulating abstract syntax trees involving names and binders, and as a basis
for the implementation of nominal rewriting tools.

Acknowledgements. We thank James Cheney, Jamie Gabbay, Andrew Pitts,
François Pottier and Christian Urban for useful discussions on the topics of
this paper.

2 The program is available from: www.dcs.kcl.ac.uk/staff/maribel/CANS
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Abstract. The aim of this paper is to introduce the notion of interval additive
generators of interval t-norms as interval representations of additive generators
of t-norms, considering both the correctness and the optimality criteria, in order
to provide a more systematic methodology for the selection of interval t-norms
in the various applications. We prove that interval additive generators satisfy the
main properties of punctual additive generators discussed in the literature.

1 Introduction

Fuzzy set theory, which was introduced by Zadeh [1], is the oldest and most widely
reported component of present-day soft computing, which deals with the design of
flexible information processing systems [2], with applications in control systems [3],
decision making [4], expert systems [5], pattern recognition [2, 6], etc.

Triangular norms (t-norms) on ([0, 1],≤) introduced by Schweizer [7] play an impor-
tant role in fuzzy set theory (see, e.g., the works in [8,9,10,11,12,13,14,15], where the
importance of t-norms was extensively discussed). The use of t-norms and t-conorms
can be considered vital for more flexible and reliable fuzzy logic controllers [16]. From
t-norms, it is possible to derive several fuzzy implication functions (e.g, S-implications,
R-implications, QL-implications, D-implications), which are important not only be-
cause they are used in representing “If ... then” rules in fuzzy systems, but also because
their use in performing inferences in approximate reasoning and fuzzy control [17].

Generators on ([0, 1],≤) are very useful for the construction of t-norms, as trans-
formations on the additive semigroup ([0,+∞],+) and the multiplicative semigroup
([0, 1], ·), and play an important role in the representation of continuous Archimedean
t-norms (see, e.g., the results presented in [12, 18, 19, 11, 16, 20, 21, 22, 23]). Moreover,
some properties of a t-norm that have a generator can be related to properties of its gen-
erator. The study of t-norms (and t-conorms) in terms of their additive generators can
lead to a fresh view of t-operators and a more systematic methodology for their selection
for the various applications, as properly pointed out by Leventides and Bounas [16].

On the other hand, Interval Mathematics [24, 25] is a mathematical theory that aims
at the representation of uncertain input data and parameters, and the automatic and
rigorous controlling of the errors that arise in numerical computations.

The integration of Fuzzy Theory and Interval Mathematics leads to the interval-valued
fuzzy set theory, which has been studied from different viewpoints (see, e.g., [26,27,28,

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 123–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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29, 30, 31, 32, 33, 34, 35, 36]). Lodwick [37] points out four ways to integrate fuzzy and
interval approaches. One of them uses membership functions with intervals values, in
order to model the uncertainty in the process of determining exact membership degrees
with the usual fuzzy membership functions, i.e., interval memberships degrees are used
to represent the uncertainty and the difficulty of an expert in determining which is the
fairest membership degree for an element with respect to a linguistic term. Then, the
radius of the interval indicates a maximal bound for the error [33, 38, 39], providing
an estimation of that uncertainty. Interval degrees also can summarize the opinion of
several experts with respect to the exact membership degree for an element with respect
to a linguistic term. In this case, the left and right interval endpoints are, respectively,
the least and the greatest degrees provided by a group of experts [28, 33, 40, 41].

In previous work [42,43,44,45,46], we investigated interval t-norms, t-conorms, and
several interval fuzzy implications, adopting the approach introduced in [47,48], where
interval extensions of some fuzzy connectives were constructed as their interval repre-
sentations [49], which considers both correctness (accuracy) and optimality aspects as
required in [50]. In this paper, we go towards the study of interval t-norms in terms of
their interval additive generators, investigating their most important related properties
and providing interval t-norms a more systematic view of their applicability. The paper
is organized as follows. Section 2 presents the main concepts of interval representations
of real functions. Additive generators and t-norms are discussed in Sect. 3. The defi-
nition and related properties of an interval t-norm are presented in Sect. 4. Section 5
introduces the interval additive generators of interval t-norms and the main related re-
sults. Section 6 is the Conclusion, with some final remarks on related work.

2 Interval Representations

Consider a, b ∈ [−∞,+∞], with a ≤ b, and the family I[a,b] = {[x, y] | a ≤ x ≤ y ≤
b}. The concepts and results in the following were adapted from [49] by considering an
interval [a, b] ⊆ [−∞,+∞] and the family I[a,b] in the place of R and IR, respectively.

The set of intervals I[a,b] has two projections π1, π2 : I[a,b] → [a, b], defined by
π1([x1, x2]) = x1 and π2([x1, x2]) = x2, respectively, for any [x1, x2] ∈ I[a,b]. For
each X ∈ I[a,b], the projections π1(X) and π2(X) are also denoted by X and X ,
respectively. Analogously, each interval functionF : I

n
[a,b] → I[c,d] has two projections,

denoted by F , F : [a, b]n → [c, d], defined, respectively, by:

F (x1, . . . , xn) = π1(F ([x1, x1], . . . , [xn, xn])) (1)

F (x1, . . . , xn) = π2(F ([x1, x1], . . . , [xn, xn])) (2)

The addition of two intervals X = [x1, x2], Y = [y1, y2] ∈ I[a,+∞], with a ≥ 0, is
defined by X + Y = [x1 + y1, x2 + y2].

Several natural partial orders may be defined on I[a,b] [51]. The most used orders in
the context of interval mathematics, and considered in this work, are the following:

1. Product order: X ≤ Y if and only if X ≤ Y and X ≤ Y .
2. Inclusion order: X ⊆ Y if and only if X ≥ Y and X ≤ Y .
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In the theory of continuous domains, associated to both partial orders, there is also
the way below relation [52, 53], which, for the case of the product order, is defined by:

[x1, x2]� [y1, y2] if and only if x1 < y1 and x2 < y2.

Remark 1. If X � Y ≤ Z then x � Z . If X � Y then X < Y (that is, X ≤ Y but
X 	= Y ). However, the converse may not hold (e.g, [1, 3] < [2, 3], but [1, 3] 	� [2, 3]).

Consider F : I[a,b] → I[c,d]. F is�-increasing if, for each X,Y ∈ I[a,b] such that
X � Y , it holds that F (X) � F (Y ). Analogously, F is �-decreasing if, for each
X,Y ∈ I[a,b] such that X � Y , it holds that F (X)
 F (Y ), that is, F (Y )� F (X).

Let X and Y be interval representations of a real number α, that is, α ∈ X and
α ∈ Y . X is said to be a better representation of α than Y wheneverX ⊆ Y .

Definition 1. A function F : I
n
[a,b] −→ I[a,b] is an interval representation of a function

f : [a, b]n −→ [a, b] if, for each X ∈ I
n
[a,b] and x ∈X , f(x) ∈ F (X). 1

An interval function F : I
n
[a,b] −→ I[c,d] is a better interval representation of f :

[a, b]n −→ [c, d] than G : I
n
[a,b] −→ I[c,d], denoted by G � F , if, for each X ∈ I

n
[a,b],

F (X) ⊆ G(X).

Definition 2. The best interval representation of a real function f : [a, b]n −→ [a, b], is
the interval function f̂ : I

n
[a,b] −→ I[a,b] defined by

f̂(X) = [inf{f(x) | x ∈X}, sup{f(x) | x ∈X}]. (3)

The interval function f̂ is well defined and for any other interval representation F of f ,
F � f̂ . f̂ returns a narrower interval than any other interval representation of f . Thus,
f̂ has the optimality property of interval algorithms mentioned by Hickey et al. [50],
when it is seen as an algorithm to compute a real function f .

Remark 2. The best interval representation of a function f : [a, b]n −→ [a, b] coincides
with the range of f in X , that is, for each X ∈ I

n
[a,b], f̂(X) = {f(x) | x ∈ X} =

f(X), if and only if f is continuous in the usual sense [49].

The range of a function f : A −→ B is denoted by Ran(f).

Proposition 1. Consider F : I[a,b] → I[c,d]. If F is�-increasing (decreasing) then F
and F are strictly increasing (decreasing).

Proof. It is straightforward.

Let f, g : [a, b]n −→ [a, b] be functions such that f ≤ g (i.e., for each x ∈ [a, b]n,
f(x) ≤ g(x)). If f and g are both strictly increasing then define I[f,g] : I

n
[a,b] −→

I[a,b] by I[f,g](X) = [f(X), g(X)]. If f and g are both strictly decreasing then define
I[f,g] : I

n
[a,b] −→ I[a,b] by I[f,g](X) = [f(X), g(X)]. Clearly, in both cases, it holds

that I[f,f ] = f̂ . Moreover, for each function h : [a, b]n −→ [a, b] such that f ≤ h ≤ g,
it holds that I[f,g] (in both cases) is an interval representation of h.

1 Other authors, e.g., [54, 55, 56], also consider this definition but with other name and purpose.
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Lemma 1. Consider F : I[a,b] → I[c,d]. If F is�-increasing (decreasing) and inclu-
sion monotonic then F is increasing (decreasing) w.r.t. the product order.

Proof. Consider X,Y ∈ I[a,b]. If X ≤ Y , then we have four possibilities: (1) X = Y ,
(2) X � Y , (3) X = Y and X < Y , or (4) X < Y and X = Y . The two first cases
are trivial, whereas the third and fourth are analogous. So, we only prove the third case.
Notice that, in this case, X ⊆ Y and, therefore, F (X) ⊆ F (Y ). Thus, it follows that
π1(F (X)) ≤ π1(F (Y )). On the other hand, X � [Y , Y ] ⊆ Y , and then it holds that
F (X) � F ([Y , Y ]) ⊆ F (Y ). Therefore, we have that π2(F (X)) < π2(F ([Y , Y ]) ≤
π2(F (Y )) and, hence, we conclude that F (X) ≤ F (Y ).

Proposition 2. Consider F : I[a,b] → I[c,d]. If F is �-increasing (decreasing) and
inclusion monotonic then F = I[F,F ].

Proof. Consider X ∈ I[a,b]. Since [X,X] ≤ X , [X,X] ⊆ X and F is increasing and
inclusion monotonic, then it holds that F ([X,X]) ≤ F (X) and F ([X,X ]) ⊆ F (X).
Thus, we have that π1(F ([X,X ])) ≤ π1(F (X)) and π1(F (X)) ≤ π1(F ([X,X])),
and, therefore, π1(F (X)) = π1(F ([X,X])). Following an analogous reasoning, it is
possible to prove that π2(F (X)) = π2(F ([X,X])). We conclude that F = I[F,F ]. The

�-decreasing case is analogous but considering [X,X] instead of [X,X ].

Proposition 3. Consider F : I[a,b] → I[c,d]. If F = I[f,g], for some (strictly) increasing
(decreasing) functions f, g : [a, b]→ [c, d], then F = f and F = g.

Proof. For x ∈ [a, b], one has that F (x) = π1(F ([x, x])) = π1(I[f,g]([x, x])) =
π1([f(x), g(x)]) = f(x). The case of F is analogous.

3 Additive Generators and T-Norms

The definitions and properties included in this section were extracted from [11, 12]
[14, 15].

Consider the real unit interval U = [0, 1]. A t-norm is an increasing function T :
U2 → U that is commutative, associative and has 1 as neutral element. Typical ex-
amples of t-norms are: (1) Gödel or minimum: G(x, y) = min(x, y); (2) Product:
P (x, y) = x · y; (3) Łukasiewicz: L(x, y) = max(x + y − 1, 0). Notice that, L ≤ P ,
that is, for each x, y ∈ U , it holds that L(x, y) ≤ P (x, y).

Definition 3. Let f : [a, b] → [c, d] be a monotonic function. The function f (−1) :
[c, d]→ [a, b] defined by

f (−1)(y) =

⎧
⎨

⎩

sup{x ∈ [a, b] | f(x) < y} if f(a) < f(b),
sup{x ∈ [a, b] | f(x) > y} if f(a) > f(b),
a if f(a) = f(b)

(4)

is called the pseudo-inverse of f .
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Notice that when f is a strictly increasing function then so is f (−1) and

f (−1)(y) = sup{x ∈ [a, b] | f(x) < y}. (5)

Analogously, when f is a strictly decreasing function then so is f (−1) and

f (−1)(y) = sup{x ∈ [a, b] | f(x) > y}. (6)

Thus, if f is strictly increasing or decreasing then so is f (−1).

Example 1. The functions p, l : U → [0,∞], defined, respectively, by: p(x) = − lnx
if x 	= 0, and p(x) = ∞ if x = 0, and l(x) = 1 − x, are strictly decreasing and
p(1) = l(1) = 0. In this case, for each y ∈ [0,∞], it holds that p(−1)(y) = e−y , and
l(−1)(y) = 1− y if y ∈ [0, 1], and l(−1)(y) = 0 if y > 1.

Theorem 1. Let f : U → [0,∞] be a strictly decreasing function with f(1) = 0 such
that for each (x, y) ∈ U2

f(x) + f(y) ∈ Ran(f) ∪ [f(0),∞]. (7)

Then, the function Tf : U2 → U , defined by

Tf(x, y) = f (−1)(f(x) + f(y)), (8)

is a t-norm. In this case, the function f is called an additive generator of the t-norm Tf .

Example 2. Consider x, y ∈ U . We have that Tl(x, y) = l(−1)(l(x)+l(y)) = l(−1)((1−
x) + (1− y)). Thus, if x + y < 1 then Tl(x, y) = 0, and if x+ y ≥ 1 then Tl(x, y) =
x+y−1. Thus, it holds that Tl = L. Analogously, we have that Tp(x, y) = p(−1)(p(x)+
p(y)) = e(lnx+ln y) = e(ln x·y) = x · y. It follows that Tp = P .

Proposition 4. Let f, g : U → [0,∞] be strictly decreasing functions with f(1) =
g(1) = 0. Then, it holds that if f ≤ g then Tf ≤ Tg.

Proof. If f ≤ g, then, for each x ∈ U , f(x) ≤ g(x) and f (−1)(x) ≤ g(−1)(x). Thus,
for each x, y ∈ U , it follows that

Tf (x, y) = f (−1)(f(x) + f(y))

≤ f (−1)(g(x) + g(y))
≤ g(−1)(g(x) + g(y))
= Tg(x, y).

4 Interval T-Norms

Based on the main contribution of the interval generalization proposed in [47], an inter-
val triangular norm may be considered as an interval representation of a t-norm. This
generalization fits with the fuzzy principle, which means that the interval membership
degree may be thought as an approximation of the exact degree [33,40,41,28,37]. In the
following, the extension of the t-norm notion for IU introduced in [47,48] is considered.
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Definition 4. A function T : I
2
U → IU is an interval t-norm if it is commutative, as-

sociative, monotonic with respect to the product and inclusion order and [1, 1] is the
neutral element.

Example 3. Consider P,L,LP : I
2
U → IU , defined by P(X,Y ) = [X · Y ,X · Y ],

L(X,Y ) =

⎧
⎨

⎩

[X + Y − 1, X + Y − 1] if X + Y ≥ 1
[0, 0] if X + Y ≤ 1
[0, X + Y − 1] otherwise,

LP(X,Y ) =
{

[X + Y − 1, X · Y ] if X + Y ≥ 1
[0, X · Y ] otherwise.

Notice that P = P̂ , L = L̂ and LP = I[L,P ], and, therefore, they are interval t-norms.

Proposition 5. A function T : I
2
U → IU is an interval t-norm if and only if there exist

t-norms T1 and T2 such that T1 ≤ T2 and T = I[T1,T2].

Proof. See [48].

Notice that, in this case, T is an interval representation of any t-norm T such that T1 ≤
T ≤ T2, T = T1 and T = T2. Moreover, if T1 = T2 then we have that T = T̂1.

5 Interval Additive Generators of Interval T-Norms

Definition 5. Let [a, b], [c, d] ∈ I[−∞,∞] andF : I[a,b] → I[c,d] be a monotonic function
with respect to the product order, such that F ([a, a])� F ([b, b]), F ([a, a])
 F ([b, b])
or F ([a, a]) = F ([b, b]). The function defined by

F (−1)(Y ) =

⎧
⎨

⎩

sup{X ∈ I[a,b] | F (X)� Y } if F ([a, a])� F ([b, b]),
sup{X ∈ I[a,b] | F (X)
 Y } if F ([a, a])
 F ([b, b]),
[a, a] if F ([a, a]) = F ([b, b]),

(9)

is called the pseudo-inverse of F .

Analogously to the punctual case, when F is�-increasing then F (−1) also is and

F (−1)(Y ) = sup{X ∈ I[a,b] | F (X)� Y }. (10)

Analogously, when F is�-decreasing then F (−1) also is and

F (−1)(Y ) = sup{X ∈ I[a,b] | F (X)
 Y }. (11)

Example 4. Consider Fl, Fp : IU → I[0,∞], defined, respectively, by Fl(X)= [1, 1]−
X , and Fp(X)=−[lnX, lnX]. These functions are both�-decreasing, and Fl([1, 1])
= Fp([1, 1]) = [0, 0]. Clearly, it holds that Fl = l̂, Fp = p̂. Notice that F (−1)

l , F
(−1)
p :

I[0,∞] → IU can be expressed, respectively, byF (−1)
l (Y ) = [1, 1]−Y and F (−1)

p (Y ) =
[e−Y , e−Y ].
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Lemma 2. Let f, g : [a, b]→ [c, d] be strictly increasing (decreasing) functions, where
[a, b], [c, d] ∈ I[−∞,∞] and f ≤ g. Then I[f,g] is an�-increasing (decreasing) interval
function.

Proof. Consider X,Y ∈ I[a,b]. If X � Y then X < Y and X < Y . So, since f and g
are strictly increasing, then f(X) < f(Y ) and g(X) < g(Y ). Therefore, it follows that
I[f,g](X)� I[f,g](Y ). The case where f and g are strictly decreasing is analogous.

Theorem 2. Let f, g : [a, b] → [c, d] be strictly increasing (decreasing) functions

where [a, b], [c, d] ∈ I[−∞,∞] and f ≤ g. Then it holds that I[f(−1),g(−1)] = I
(−1)
[f,g] .

Proof. If f and g are both strictly increasing, then f (−1) and g(−1) also are strictly
increasing and f (−1) ≤ g(−1). Then, it follows that I[f(−1),g(−1)] is well defined and, by
Lemma 2, it is�-increasing. Therefore, we have that:

I[f(−1),g(−1)](Y ) = [f (−1)(Y ), g(−1)(Y )]

= [sup{x ∈ [a, b] | f(x) < Y }, sup{x ∈ [a, b] | g(x) < Y }]
= sup{[x1, x2] ∈ I[a,b] | f(x1) < Y and g(x2) < Y }
= sup{[x1, x2] ∈ I[a,b] | I[f,g]([x1, x2])� Y } = I

(−1)
[f,g] (Y ).

Analogously, if f and g are both strictly decreasing, then f (−1) and g(−1) also are
strictly decreasing, and f (−1) ≤ g(−1). Then, I[f(−1),g(−1)] is well defined and, by
Lemma 2, it follows that it is�-decreasing. Therefore, we have that:

I[f(−1),g(−1)](Y ) = [f (−1)(Y ), g(−1)(Y )]

= [sup{x ∈ [a, b] | f(x) > Y }, sup{x ∈ [a, b] | g(x) > Y }]
= sup{[x1, x2] ∈ I[a,b] | f(x2) > Y and g(x1) > Y }
= sup{[x1, x2] ∈ I[a,b] | I[f,g]([x1, x2])
 Y } = I

(−1)
[f,g] (Y ).

Corollary 1. Let f : [a, b] → [c, d] be a strictly increasing (decreasing) function, with

[a, b], [c, d] ∈ I[−∞,∞]. Then f̂ is�-increasing (decreasing) and f̂ (−1) = f̂ (−1).

Proof. It follows from Lemma 2, Theorem 2 and the fact that f̂ = I[f,f ].

Proposition 6. Let F : I[a,b] → I[c,d] be a �-increasing (decreasing) function, with

[a, b], [c, d] ∈ I[−∞,∞]. Then, F (−1) = F (−1) and F (−1) = F
(−1)

, where F , F :
[a, b] → [c, d] and F (−1), F (−1) : [c, d] → [a, b] are the projections functions defined
in equations (1) and (2).

Proof. Suppose that F is �-increasing. Then, F (−1) is also �-increasing, and, by
Prop. 1, F and F (−1) are�-increasing too. By equations (1), (2) and (10), we have that
F (−1)(y) = π1(sup{X ∈ I[a,b] | F (X) 
 [y, y]}). Thus, by Remark 1 and because
X ≤ [π2(X), π2(X)] and F is�-increasing, then sup{X ∈ I[a,b] | F (X)
 [y, y]} =
sup{[x, x] ∈ I[a,b] | F ([x, x]) 
 [y, y]}. It follows that F (−1)(y) = π1(sup{[x, x] ∈
I[a,b] | F ([x, x]) > [y, y]}) = sup{π1([x, x]) ∈ I[a,b] | π1(F ([x, x])) > π1([y, y])} =
sup{x ∈ [a, b] | F (x) > y} = F (−1)(y). The other cases are analogous.
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Theorem 3. Let F : IU → I[0,∞] be a�-decreasing function, with F ([1, 1]) = [0, 0],
such that F (X) + F (Y ) ∈ Ran(F ) ∪ {Z ∈ I[∞,∞] | F ([0, 0]) ≤ Z}, for all (X,Y ) ∈
I
2
U . The function TF : I

2
U → IU , given by

TF (X,Y ) = F (−1)(F (X) + F (Y )), (12)

where F (−1) is the pseudo-inverse of F , is an interval t-norm. The interval function F
is called the interval additive generator of the interval t-norm TF .

Proof. By Prop. 5, there exist t-norms TF and TF such that TF (X,Y ) =
[TF (π1(X), π1(Y )), TF (π2(X), π2(Y ))]. Thus, the following properties hold:

Commutativity: From Eq. (12), it follows that TF (X,Y ) = TF (Y,X).

Associativity: It follows that:

TF (X,TF (Y, Z)) = TF (X, [TF (π1(Y ), π1(Z)), TF (π2(Y ), π2(Z))])

= [TF (π1(X), π1([TF (π1(Y ), π1(Z)), TF (π2(Y ), π2(Z))])),

TF (π2(X), π2([TF (π1(Y ), π1(Z)), TF (π2(Y ), π2(Z))]))]

= [TF (π1(X), TF (π1(Y ), π1(Z))), TF (π2(X), TF (π2(Y ), π2(Z)))]

= [TF (TF (π1(X), π1(Y )), π1(Z)), TF (TF (π2(X), π2(Y )), π2(Z))]

= T([TF (π1(X), π1(Y )), TF (π2(X), π2(Y ))], Z) = T(T(X,Y ), Z)

Monotonicity: If Y ≤ Z then, since F is decreasing, it follows that F (X) + F (Y ) ≥
F (X)+F (Z) and then F (−1) is also decreasing. Then, we have that TF (X,Y ) =
F (−1)(F (X) + F (Y )) ≤ F (−1)(F (X) + F (Z)) = TF (X,Z).

⊆-Monotonicity: If Y ⊆ Z then π1(Z) ≤ π1(Y ) and π2(y) ≤ π2(Z). So, by the
monotonicity of t-norms TF and TF , it follows that

TF (X,Y ) = [TF (π1(X), π1(Y )), TF (π2(X), π2(Y ))]

⊆ [TF (π1(X), π1(Z)), TF (π2(X), π2(Z))] = TF (X,Z)

Example 5. Consider 
-decreasing functions Fp and Fl of Ex. 4. Then we have that
TFp(X,Y ) = X · Y and TFl

(X,Y ) = [max(X + Y − 1, 0),max(X + Y − 1)] =
sup{X + Y − [1, 1], [0, 0]}. It is immediate that TFl

= T̂l = L̂ and TFp = T̂p = Ĝ.

Theorem 4. A strictly decreasing function f : U → [0,∞] is an additive generator of
a t-norm Tf if and only if f̂ is an interval additive generator of the interval t-norm T̂f ,

that is, T̂f = Tf̂ .

Proof. (⇒) Consider X,Y ∈ IU . If X � Y , then, because f is strictly decreasing,
f(Y ) < f(Y ) < f(X) and f(Y ) < f(X) < f(X). Then, we have that f̂(X) =
[f(X), f(X)] � [f(Y ), f(Y )] = f̂(Y ). Thus, we conclude that f̂ is �-decreasing.
By Cor. 1, it holds that f̂ (−1)(Y ) = [f (−1)(Y ), f (−1)(Y )]. So, for each X,Y ∈ IU :

T̂f(X,Y )=[Tf(X,Y ), Tf(X,Y )] = [f (−1)(f(X) + f(Y )), f (−1)(f(X) + f(Y ))]

= f̂ (−1)([f(X) + f(Y ), f(X) + f(Y )]) = f̂ (−1)([f(X), f(X)] + [f(Y ), f(Y )])

= f̂ (−1)(f̂(X) + f̂(Y )) = Tf̂ (X,Y ).
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Thus, by Theorem 3, T̂f is an interval t-norm with f̂ as the interval additive generator.
(⇐) It is immediate that, for each x, y ∈ [a, b], T̂f([x, x], [y, y]) = [Tf(x, y), Tf (x, y)].

Proposition 7. Let f, g : U → [0,∞] be strictly decreasing functions such that f(1) =
g(1) = 0. If f ≤ g then it holds that TI[f,g] ⊆ I[Tf ,Tg].

Proof. Consider X,Y ∈ IU . Since clearly I[f,g]([1, 1]) = [0, 0], and by Lemma 2 I[f,g]

is�-decreasing, then it follows that

TI[f,g](X,Y ) = I
(−1)
[f,g] (I[f,g](X) + I[f,g](Y ))

= I
(−1)
[f,g] ([f(X), g(X)] + [f(Y ), g(Y )]) = I

(−1)
[f,g] ([f(X) + f(Y ), g(X) + g(Y )])

= sup{[x1, x2] ∈ IU | I[f,g]([x1, x2])
 [f(X) + f(Y ), g(X) + g(Y )]}
= sup{[x1, x2] ∈ IU | [f(x2), g(x1)]
 [f(X) + f(Y ), g(X) + g(Y )]}
= [sup{x ∈ U | f(x) > f(X) + f(Y )}, sup{x ∈ U | g(x) > g(X) + g(Y )}]
⊆ [sup{x ∈ U | f(x) > f(X) + f(Y )}, sup{x ∈ U | g(x) > g(X) + g(Y )}]
= [f (−1)(f(X) + f(Y )), g(−1)(g(X) + g(Y ))] = [Tf (X,Y ), Tg(X,Y )]
= I[Tf ,Tg](X,Y ).

Corollary 2. Let T be an interval t-norm and F : IU → I[0,∞] be an interval additive
generator of T. If F is inclusion monotonic, then I[TF ,TF ] ⊆ T.

Proof. By Prop. 1, F and F are strictly decreasing. Since F (1) = F (1) = 0 and
F ≤ F , then by Prop. 7, we have that TI[F ,F ]

⊆ I[TF ,TF ]. Thus, since, by Prop. 2,
F = I[F ,F ], then it follows that I[TF ,TF ] = TF . Since F is an interval additive generator
of T, then it holds that TF = T. Therefore, we conclude that I[TF ,TF ] ⊆ T.

Theorem 5. Let F : IU → I[0,∞] be an interval additive generator of an interval t-
norm T. If F is inclusion monotonic and F represents a strictly decreasing function
f : U → [0,∞] such that f(1) = 0, then T represents the t-norm Tf .

Proof. ConsiderX,Y ∈ IU . For each x ∈ X , since F represents f , then f(x) ∈ F (X)
and so π1(F (X)) ≤ f(x) ≤ π2(F (X)). By Lemma 1, F is decreasing, and then
F ([X,X ]) ≤ F (X) ≤ F ([X,X]). Thus, it follows that F (X) ≤ f(x) ≤ F (X).
Analogously, if y ∈ Y , then it holds that F (Y ) ≤ f(y) ≤ F (Y ). Thus, it follows that
F (X) +F (Y ) ≤ f(x) + f(y) ≤ F (X) +F (Y ). Hence, we have that F (−1)(F (X) +
F (Y )) ≤ f (−1)(f(x) + f(y)) ≤ F (−1)

(F (X) + F (Y )). It follows that

Tf (x, y) ∈ I
[F (−1),F

(−1)
]
([F (X) + F (Y ), F (X) + F (Y )])

= I
(−1)

[F,F ]
([F (X) + F (Y ), F (X) + F (Y )]) (by Theorem 2)

= F (−1)([F (X), F (X)] + ([F (Y ), F (Y )]) (by Prop. 2)

= F (−1)(I[F ,F ](X) + I[F,F ](Y )) = F (−1)(F (X) + F (Y )) (by Prop. 2)

= TF (X,Y ) (by Eq. 12).
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6 Conclusion and Final Remarks

The main contribution of this paper is the introduction of interval additive generators of
interval t-norms as interval representations of punctual additive generators of punctual
t-norms, considering both the correctness and the optimality criteria, in an approach that
was already considered in our previous work [42, 43, 45, 46, 47, 48]. We also show that
interval additive generators satisfy the main properties of punctual additive generators
discussed in the literature, and, therefore, they may play an important role for practical
applications, by providing more flexibility in the selection of interval t-norms.

On the other hand, related work [57] presented additive and multiplicative gener-
ators in interval-valued fuzzy set theory, with a study about the relationship between
generators and negators and between generators and t-norms. However, it adopts a dif-
ferent approach from ours, in a way that we explain in the following. The additive and
multiplicative generators are defined on the lattice LI 2, which is the underlying lat-
tice of interval-valued fuzzy set theory, and a special class of generators on LI were
investigated, showing that they can be represented by generators on ([0, 1], ·). We no-
tice that a different definition for the interval addition is used, which is not the usual
one [24,25]. Also, the approach is restricted to strictly decreasing functions. Moreover,
although they consider the idea of representation of interval t-norms as the one that can
be obtained from punctual t-norms, no correctness criterium is applied.

The approach we have adopted seems to have led us to more natural and simple
definitions than the ones presented in [57]. Moreover, since we have considered additive
generators that are either strictly increasing or strictly decreasing, the results presented
in this paper can be easily extended to obtain additive generators of interval t-conorms.

On going work is the study of interval additive generators that are inclusion mono-
tonic, which is a nice property that only makes sense for the interval approach, since
there is no counterpart for punctual functions. Further work consists of the investigation
of the relationship between the right-continuity property of interval additive generators
and the generated interval t-norms. We also intend to analyze the relationships between
interval additive generators and the classes of (i) Archimedean interval t-norms and
(ii) interval automorphisms. Another future work is the extension of the concept for
multiplicative generators, and also to develop an approach for interval t-conorms.

Acknowledgments. This work has been partially supported by CNPq. We are are very
grateful to the referees for their valuable suggestions that help us to improve the paper.
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21. Mesiarová, A.: H-transformation of t-norms. Information Sciences 176, 1531–1545 (2006)
22. Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with

boundary. Ann. Math. 65, 117–143 (1957)
23. Vicenı́k, P.: Additive generators of associative functions. Fuzzy Sets and Systems 153, 137–

160 (2005)
24. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New

York (1983)
25. Moore, R.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
26. Cornelis, G., Deschrijver, G., Kerre, E.: Implication in intuitionistic fuzzy and interval-

valued fuzzy set theory: construction, classification, application. Int. Journal Approximate
Reason 35, 55–95 (2004)

27. Deschrijver, G., Kerre, E.E.: Implicators based on binary aggregation operators in interval-
valued fuzzy set theory. Fuzzy Sets and Systems 153(2), 229–248 (2005)

28. Dubois, D., Prade, H.: Interval-valued fuzzy sets, possibility theory and imprecise probabil-
ity. In: Proc. Intl. Conf. Fuzzy Logic and Technology, Barcelona, pp. 314–319 (2005)

29. Gehrke, M., Walker, C., Walker, E.: Some comments on interval valued fuzzy sets. Intl.
Journal of Intelligent Systems 11, 751–759 (1996)



134 G.P. Dimuro et al.

30. Gorzalczany, M.B.: A method of inference in approximate reasoning based on interval-
valued fuzzy sets. Fuzzy Sets and Systems 21(1), 1–17 (1987)

31. Grattan-Guiness, I.: Fuzzy membership mapped onto interval and many-valued quantities. Z.
Math. Logik. Grundladen Math. 22, 149–160 (1975)

32. Moore, R., Lodwick, W.: Interval analysis and fuzzy set theory. Fuzzy Sets and Sys-
tems 135(1), 5–9 (2003)

33. Nguyen, H., Kreinovich, V., Zuo, Q.: Interval-valued degrees of belief: applications of in-
terval computations to expert systems and intelligent control. Int. Journal of Uncertainty,
Fuzziness, and Knowledge-Based Systems 5(3), 317–358 (1997)

34. Sambuc, R.: Fonctions φ-floues. Application l’aide au diagnostic en pathologie thyroidienne.
PhD thesis, Univ. Marseille, Marseille (1975)

35. Turksen, I.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems 20,
191–210 (1986)

36. Gasse, B.V., Cornelis, G., Deschrijver, G., Kerre, E.: On the properties of a generalized class
of t-norms in interval-valued fuzzy logics. New Math. and Natural Comput. 2, 29–42 (2006)

37. Lodwick, W.A.: Preface. Reliable Computing 10(4), 247–248 (2004)
38. Moore, R.E.: Interval Arithmetic and Automatic Error Analysis in Digital Computing. PhD

thesis, Stanford University, Stanford (1962)
39. Kearfort, R.B., Kreinovich, V. (eds.): Applications of Interval Computations. Kluwer Aca-

demic Publishers, Boston (1996)
40. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman&Hall, London

(1991)
41. Walley, P.: Measures of uncertainty. Artificial Intelligence 83, 1–58 (1996)
42. Bedregal, B.C., Santiago, R.H.N., Reiser, R.H.S., Dimuro, G.P.: The best interval represen-

tation of fuzzy Simplications and automorphisms. In: Proc. of the IEEE Intl. Conf. on Fuzzy
Systems, Londres, pp. 3220–3230. IEEE, Los Alamitos (2007)

43. Bedregal, B.C., Santiago, R.H.N., Reiser, R.H.S., Dimuro, G.P.: Analyzing properties of
fuzzy implications obtained via the interval constructor. In: IEEE Post-Proceedings of SCAN
2006: Revised Setected Papers of 12th GAMM - IMACS Intl. Symp. Scientific Computing,
Computer Arithmetic and Validated Numerics, Duisburg, paper no. 13. IEEE, Los Alamitos
(2007)

44. Bedregal, B.C., Santiago, R.H.N., Reiser, R.H.S., Dimuro, G.P.: Properties of fuzzy implica-
tions obtained via the interval constructor. TEMA 8(1), 33–42 (2007),
http://www.sbmac.org.br/tema

45. Bedregal, B.C., Santiago, R.H.N., Dimuro, G.P., Reiser, R.H.S.: Interval valued R-
implications and automorphisms. In: Pre-Proceedings of the 2nd Work. on Logical and Se-
mantic Frameworks, with Applications, Ouro Preto, pp. 82–97 (2007)

46. Reiser, R.H.S., Dimuro, G.P., Bedregal, B., Santiago, R.: Interval valued QL-implications. In:
Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 307–321. Springer,
Heidelberg (2007)

47. Bedregal, B., Takahashi, A.: The best interval representation of t-norms and automorphisms.
Fuzzy Sets and Systems 157(24), 3220–3230 (2006)

48. Bedregal, B., Takahashi, A.: Interval valued versions of t-conorms, fuzzy negations and fuzzy
implications. In: IEEE Proc. Intl. Conf. on Fuzzy Systems, Vancouver, Los Alamitos, pp.
9553–9559 (2006)
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Abstract. This paper shows how propositional dynamic logic (PDL)
can be interpreted as a logic for multi-agent belief revision. For that we
revise and extend the logic of communication and change (LCC) of [9].
Like LCC, our logic uses PDL as a base epistemic language. Unlike LCC,
we start out from agent plausibilities, add their converses, and build
knowledge and belief operators from these with the PDL constructs. We
extend the update mechanism of LCC to an update mechanism that han-
dles belief change as relation substitution, and we show that the update
part of this logic is more expressive than either that of LCC or that of
doxastic/epistemic PDL with a belief change modality. It is shown that
the properties of knowledge and belief are preserved under any update,
and that the logic is complete.

Keywords: PDL, epistemic dynamic logic, belief revision, knowledge
update.

1 Introduction

Proposals for treating belief revision in the style of dynamic epistemic logic (see
Gerbrandy [15], van Ditmarsch [12], van Benthem [6,10], and Baltag, Moss and
coworkers [3,1,2], or the textbook treatment in [13]) were made in [8] and [7],
where it is suggested that belief revision should be treated as relation substi-
tution. This is different from the standard action product update from [3], and
it suggests that the proper relation between these two update styles should be
investigated.

We propose a new version of action product update that integrates belief
revision as relation substitution with belief update by means of action product.
We show that this allows to express updates that cannot be expressed with
action product only or with relation substitution only.

We graft this new update mechanism on a base logic that can express knowl-
edge, safe belief, conditional belief, and plain belief, and we show that the proper
relations between these concepts are preserved under any update. The complete-
ness of our logic is also provided.

Our main source of inspiration is the logic of communication and change (LCC)
from [9]. This system has the flaw that updates with non-S5 action models may
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destroy knowledge or belief. If one interprets the basic relations as knowledge re-
lations, then updating with a lie will destroy the S5 character of knowledge; sim-
ilarly, if one interprets the basic relations as belief, the relational properties of
belief can be destroyed by malicious updates. Our redesign does not impose any
relational conditions on the basic relations, so this problem is avoided. Our com-
pleteness proof is an adaptation from the completeness proof for LCC. The treat-
ment of conditional belief derives from [11]. Our work can be seen as a proposal
for integrating belief revision by means of relation substitution, as proposed in [7]
with belief and knowledge update in the style of [3].

2 PDL as a Belief Revision Logic

A preference model M for set of agents Ag and set of basic propositions Prop
is a tuple (W,P, V ) where W is a non-empty set of worlds, P is a function that
maps each agent a to a relation Pa (the preference relation for a, with wPaw

′

meaning that w′ is at least as good as w), and V is a map from W to P(Prop)
(a map that assigns to each world a Prop-valuation). A distinctive preference
model is a pair consisting of a preference model and a set of distinctive states
in that model. The intuitive idea is that the actual world is constrained to be
among the distinctive worlds. This information is typically not available to the
agents, for an agent’s knowledge about what is actual and what is not is encoded
in her Pa relation (see below).

There are no conditions at all on the Pa. Appropriate conditions will be im-
posed by constructing the operators for belief and knowledge by means of PDL
operations.

We fix a PDL style language for talking about preference (or: plausibility).
Assume p ranges over Prop and a over Ag.

φ ::= � | p | ¬φ | φ1 ∧ φ2 | [π]φ
π ::= a | ǎ |?φ | π1;π2 | π1 ∪ π2 | π∗

We use PROG for the set of program expressions (expressions of the form π) of
this language.

This is to be interpreted in the usual PDL manner, with [[[π]]]M giving the
relation that interprets relational expression π in M = (W,P, V ). [π]φ is true in
world w of M if for all v with (w, v) ∈ [[[π]]]M it holds that φ is true in v. We
adopt the usual abbreviations of ⊥, φ ∨ ψ, φ→ ψ, φ↔ ψ and 〈π〉φ.

The following additional abbreviations allow us to express knowledge, safe
belief, conditional belief and plain belief:

Knowledge. ∼a abbreviates (a ∪ ǎ )∗.
Safe belief. ≥a abbreviates a∗.
Conditional belief. [→φ

a ]ψ abbreviates 〈∼a〉φ→ 〈∼a〉(φ ∧ [≥a](φ→ ψ)).
Plain belief. [→a]φ abbreviates [→�a ]φ. (note: it follows that [→a]φ is equiva-

lent to 〈∼a〉[≥a]φ).
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We will occasionally use ≤a for the converse of ≥a.
Safe belief is belief that persists under revision with true information (see Stal-

naker [20]). The definition of [→φ
a ]ψ (conditional belief for a, with condition φ) is

from Boutillier [11] This definition, also used in [5], states that conditional to φ,
a believes in ψ if either there are no accessible φ worlds, or there is an accessible
φ world in which the belief in φ→ ψ is safe. The definition of [→φ

a ]ψ matches the
well-known accessibility relations→P

a for each subset P of the domain, given by:

→P
a := {(x, y) | x∼ay ∧ y ∈ MIN≤aP},

where MIN≤aP , the set of minimal elements of P under ≤a, is defined as

{s ∈ P : ∀s′ ∈ P (s′ ≤a s⇒ s ≤a s′)}.

This logic is axiomatised by the standard PDL rules and axioms ([19,18]) plus
axioms that define the meanings of the converses ǎ of basic relations a. The
PDL rules and axioms are:

Modus ponens and axioms for propositional logic
Modal generalisation From � φ infer � [π]φ

Normality � [π](φ→ ψ)→ ([π]φ→ [π]ψ)
Test � [?φ]ψ ↔ (φ→ ψ)
Sequence � [π1;π2]φ↔ [π1][π2]φ
Choice � [π1 ∪ π2]φ↔ ([π1]φ ∧ [π2]φ)
Mix � [π∗]φ↔ (φ ∧ [π][π∗]φ)
Induction � (φ ∧ [π∗](φ→ [π]φ))→ [π∗]φ

The relation between the basic programs a and ǎ is expressed by the standard
modal axioms for converse:

� φ→ [a]〈ǎ 〉φ � φ→ [ǎ ]〈a〉φ

Any preference relation Pa can be turned into a pre-order by taking its reflexive
transitive closure Pa∗. So our abbreviation introduces the ≥a as names for these
pre-orders. The knowledge abbreviation introduces the ∼a as names for the
equivalences given by (Pa ∪ Pa )̌∗. If the Pa are well-founded, MIN≤aP will be
non-empty for non-empty P . Wellfoundedness of Pa is the requirement that there
is no infinite sequence of different w1, w2, . . . with . . . Paw2Paw1. Fortunately,
we do not have to worry about this relational property, for the canonical model
construction for PDL yields finite models, and each relation on a finite model is
well-founded.

This yields a very expressive complete and decidable PDL logic for belief
revision, to which we can add mechanisms for belief update and for belief change.

Theorem 1. The above system of belief revision PDL is complete for preference
models. Since the canonical model construction for PDL yields finite models, it
is also decidable.
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Knowledge is S5 (equivalence), safe belief is S4 (reflexive and transitive), plain
belief is KD45 (serial, transitive and euclidean). Note that the following is valid:

〈∼a〉[≥a]φ→ [∼a]〈≥a〉〈∼a〉[≥a]φ

This shows that plain belief is euclidean.

3 Action Model Update

We give the definition of action models A and of the update product operation
⊗ from Baltag, Moss, Solecki [3]. An action model is like a preference model for
Ag, with the difference that the worlds are now called actions or events, and
that the valuation has been replaced by a map pre that assigns to each event e
a formula of the language called the precondition of e. From now on we call the
preference models static models.

Updating a static model M = (W,P, V ) with an action model A = (E,P,pre)
succeeds if the set

{(w, e) | w ∈ W, e ∈ E,M, w |= pre(e)}

is non-empty. The update result is a new static model M ⊗ A = (W ′, P ′, V ′)
with

– W ′ = {(w, e) | w ∈ W, e ∈ E,M, w |= pre(e)},
– P ′a is given by {(w, e), (v, f)) | (w, v) ∈ Pa, (e, f) ∈ Pa},
– V ′(w, e) = V (w).

If the static model has a set of distinctive states W0 and the action model a set
of distinctive events E0, then the distinctive worlds of M⊗A are the (w, e) with
w ∈W0 and e ∈ E0.

Below is an example pair of a static model with an update action. The static
model, on the left, pictures the result of a hidden coin toss, with three onlookers,
Alice, Bob and Carol. The model has two distinctive worlds, marked in grey; h
in a world means that the valuation makes h true, h in a world means that
the valuation makes h false in that world. The Pa relations for the agents are
assumed to be equivalences; reflexive loops for a, b, c at each world are omitted
from the picture.

0 : h 1 : h

abc

0 : h 1 : �
abc

The action model represents a secret test whether the result of the toss is h.
The distinctive event of the update is marked grey. The Pi relations are drawn,
for three agents a, b, c. The result of the update is shown here:
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(0, 0) : h (0, 1) : h (1, 1) : h

abc abc

abc

This result can be reduced to the bisimilar model below:

0 : h 1 : h

abc

The result of the update is that the distinction mark on the h world has
disappeared, without any of a, b, c being aware of the change.

4 Adding Factual Change and Belief Change

Factual change was already added to update models in LCC. We will now also
add belief change. Let an action model with both changes be a quintuple.

A = (E,P,pre,Sub,SUB)

where E,P,pre are as before, Sub is a function that assigns a propositional
binding to each e ∈ E, and SUB is a function that assigns a relational binding
to each e ∈ E. A propositional substitution is a map from proposition letters to
formulas, represented by a finite set of bindings.

{p1 �→ φ1, . . . , pn �→ φn}

where the pk are all different, and where no φk is equal to pk. It is assumed that
each p that does not occur in a left-hand side of a binding is mapped to itself.

Similarly, a relational substitution is a map from agents to program expres-
sions, represented by a finite set.

{a1 �→ π1, . . . , an �→ πn}

where the aj are agents, all different, and where the πj are program expressions
from the PDL language. It is assumed that each a that does not occur in the
left-hand side of a binding is mapped to a. Use ε for the identity propositional
or relational substitution.

Definition 1 (Update execution). The update execution of static model M =
(W,P, V ) with action model A = (E,P,pre,Sub,SUB) is a tuple: M � A =
(W ′, P ′, V ′) where:
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– W ′ = {(w, e) |M, w � pre(e)}.
– P ′a is given by

{((w1, e1), (w2, e2)) |
there is a SUB(e1)(a) path from (w1, e1) to (w2, e2) in M⊗A}.

– V ′(p) = {(w, e) ∈W ′ |M, w � Sub(e)(p)}.
Note: the definition of P ′a refers to paths in the old style update product.

Consider the suggestive upgrade �aφ discussed in Van Benthem and Liu [8] as
a relation changer (uniform relational substitution):

�aφ =def ?φ; a; ?φ ∪ ?¬φ; a; ?¬φ ∪ ?¬φ; a; ?φ.

This models a kind of belief change where preference links from φ worlds to ¬φ
worlds for agent a get deleted. It can be modelled as the following example of
public belief change.

Example 1 (Public Belief Change). Action model

G = ({e},P,pre,Sub,SUB)

where:
– For all the i ∈ Ag, Pi = {(e, e)}.
– pre(e) = �.
– Sub(e) = ε.
– SUB(e) = {a �→ �aφ, b �→ �bφ}.

Note that our action model and its update execution implement the point-wise
relation substitutions which is more powerful than merely upgrading the relations
uniformly everywhere in the model, as the following example shows:

Example 2 (Non-public Belief Change). Action model

G′ = ({e0, e1},P,pre,Sub,SUB)

where:

– For all i ∈ Ag, if i �= b then Pi = {(e0, e0), (e1, e1)},
Pb = {(e0, e0), (e1, e1), (e0, e1), (e1, e0)}

– pre(e0) = pre(e1) = �.
– Sub(e0) = Sub(e1) = ε.
– SUB(e0) = {a �→ �aφ}, SUB(e1) = ε.

Assume e0 is the actual event.

This changes the belief of a while b remains unaware of the change.
Let PDL+ be the result of adding modalities of the form [A, e]φ to PDL, with

the following interpretation clause:

M, w |= [A, e]φ iff M, w |= pre(e) implies M � A, (w, e) |= φ.

Theorem 2 (Soundness and Completeness for PDL+). � φ iff � φ.
Proof. Completeness can be proved by a patch of the LCC completeness proof
in [9] where the action modalities are pushed through program modalities by
program transformations. See the first Appendix.
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5 Expressivity of Action Update with Changes

Although PDL+ reduces to PDL, just like LCC, the new action update mech-
anism (the model transformation part) is more expressive than classic product
update and product update with factual changes, as we will show in this section.
Call a function on epistemic models that is invariant for bisimulation a model
transformer. Then each update can be viewed as a model transformer, and a set
of model transformers corresponds to an update mechanism. If U is an update
mechanism, let Tr(U) be its set of model transformers.

Definition 2. Update mechanism U1 is less expressive than update mechanism
U2 if Tr(U1) ⊂ Tr(U2).

First note that the classical product update (with factual changes) has the elimi-
native nature for relational changing: according to the definition, the relations in
the updated model must come from relations in the static model. For example,
it is not possible, by product update, to introduce a relational link for agent a
to a static model where the a relation was empty. However, we can easily do this
with an uniform relation substitution a �→?�. Thus we have:

Proposition 1. Relational substitution can express updates that cannot be ex-
pressed with action product update(with factual changes) alone, so relational sub-
stitution is not less expressive than action product update.

On the other hand, relational substitution alone cannot add worlds into a static
model, while the classical product update mechanism can copy sets of worlds.
Therefore it is not hard to see:

Proposition 2. Action product update can express updates that cannot be ex-
pressed with relational substitution alone, so action product update is not less
expressive than relational substitution.

Our action update with both relational and factual changes combines the power
of product update and propositional/relational substitutions. Thus according
to Propositions 1 and 2, it is more expressive than relational eliminative prod-
uct update with factual changes in LCC, and more expressive than proposi-
tional/relation changing substitution simpliciter. Moreover, we can prove a even
stronger result for the case of S5 updates.

Theorem 3. In the class of S5 model transformers, action product update with
factual changes is less expressive than action update with both factual and rela-
tional changes.

Proof. Let A be the action model ({e},P,pre,Sub,SUB) where Pa={(e, e)}=
Pb; pre(e) = �; Sub(e) = ε; SUB(e) = {a �→ b}. It is easy to see that this action
model will change the relation a as b uniformly while keeping the updated model
being still S5, if the static model is indeed S5. We now show that it does not
have a corresponding action model in LCC style (only factual changes) which
can give the bisimilar updated result for every static model.
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First consider the following static S5 model M (left) and its updated model
M � A(right) (reflexive loops are omitted):

w0 : p w1 : p

b
(w0, e) : p (w1, e) : p

a, b

For a contradiction, suppose there is a LCC action model A′ with distinctive
event e′ such that M1 � A, (w0, e) ↔ M ⊗A′, (w0, e

′). Then according to the
definition of bisimulation, there must be an a−link from (w0, e

′) to a p world
(s, e′′) in M ⊗ A′. According to the definition of ⊗, (w0, s) ∈ pa in M and
(e′, e′′) ∈ Pa in A′. Thus s = w0 and M, w0 � pre(e′)∧ pre(e′′). Let us consider
the following S5 model M′ which consists of two copies of M with an a−link in
between:

t0 : p, q t1 : p, q

b

t3 : p, q t4 : p, q

b

a

where q does not show up in pre(e′) and pre(e′′). Thus it is not hard to see that
pre(e′)∧pre(e′) holds on t0 and t3. Then M′⊗A′, (t0, e′) must has an a link from
a q world (t0, e′) to a q world (t3, e′′), while in M′ � A, (t0, e) there is no such
link. Thus M′ � A, (t0, e) and M′ ⊗A′, (t0, e′) are not bisimilar. Contradiction.

An example illustrating the use of the new belief revision update mechanism is
worked out in the second Appendix. This example also shows the difference in
expressive power for the achievement of common knowledge between knowledge
update and belief revision.

6 Future Work

Several update mechanisms for dynamic epistemic logic have been proposed in
the literature. A very expressive one is the action-priority upgrade proposed
in [4,5]. Comparing the expressiveness of our update with factual and relation
change with that of their mechanism is future work.

The new update mechanism proposed above is grafted on a doxastic/epistemic
logic that does not impose any conditions on the basic preference relations. Thus,
any update will result in a proper epistemic model. This situation changes as
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soon as one imposes further conditions. E.g., if the basic preferences are assumed
to be locally connected, then one should restrict the class of update models to
those that preserve this constraint. For each reasonable constraint, there is a
corresponding class of model transformers that preserve this constraint. Finding
syntactic characterizations of these classes is future work.

We are interested in model checking with doxastic/epistemic PDL and up-
dates/upgrades in the new style, and we are currently investigating its complex-
ity. We intend to use the logic, and the new update/upgrade mechanism, in the
next incarnation of the epistemic model checker DEMO [14].
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Appendix 1: Soundness and Completeness of PDL+

To define the proper program transformation for PDL+ we need a function ∪

that maps each PDL program to its converse (in the obvious sense that the
interpretation of π∪ is the converse of that of π):

(ǎ )∪ = a
(?φ)∪ = ?φ
(π1;π2)∪ = π2

∪;π1
∪

(π1 ∪ π2)∪ = π1
∪ ∪ π2

∪

(π∗)∪ = (π∪)∗

What is needed to get a completeness proof is a redefinition of the epistemic
program transformation operation TA

ij used in the LCC completeness to push
an action model modality [A, e] through an epistemic program modality [π].

TA
ij(a) =

{
?pre(ei); SUB(ei)(a) if ei �→SUB(ei)(a) ej in A
?⊥ otherwise

TA
ij (ǎ ) =

{
?pre(ei); (SUB(ei)(a))∪ if ei �→(SUB(ei)(a))∪ ej in A
?⊥ otherwise

TA
ij (?φ) =

{
?(pre(ei) ∧ [A, ei]φ) if i = j
?⊥ otherwise

TA
ij(π1;π2) =

⋃n−1
k=0 (TA

ik(π1);TA
kj(π2))

TA
ij (π1 ∪ π2) = TA

ij (π1) ∪ TA
ij (π2))

TA
ij (π

∗) = KA
ijn(π)
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where it is assumed that the action model A has n states, and the states are
numbered 0, . . . , n− 1. KA

ijn is the Kleene path transformer, as in [9].
The proof system for PDL+ consists of all axioms and rules of LCC except

the reduction axiom:

[A, ei][π]φ↔
n−1∧

j=0

[TA
ij (π)][A, ej ]φ.

In addition, PDL+ has the axioms for converse atomic programs as in section 2,
and reduction axioms of the form:

[A, ei][π]φ↔
n−1∧

j=0

[TA
ij(π)][A, ej ]φ.

This is the patch we need to prove the completeness result (Theorem 2).

Appendix 2: Restricted Announcements Versus Restricted
Belief Changes

A restricted announcement of φ is an announcement of φ that is not delivered
to one of the agents i. Notation !φ−i. The action model for !φ−i has event set
{e0, e1}, with e0 the actual event, where e0 has precondition φ and e1 precondi-
tion �, and with the preference relation given by

Pi = {(e0, e0), (e1, e1), (e0, e1), (e1, e0)},
and Pj = {(e0, e0), (e1, e1)} for all j �= i.

e0 : φ e1 : �

i

A protocol for restricted announcements, for epistemic situation M , is a set of
finite sequences of formula-agent pairs, such that each sequence

(φ0, i0), . . . , (φn, in)

has the following property:

∀k ∈ N : 0 ≤ k < n→ ∃i ∈ Ag : M, w |= [!φ−i00 ], . . . , [!φ−ik−1
k−1 ][∼i]φk.

Intuitively, at every stage in the sequence of restricted announcements, some
agent has to possess the required knowledge to make the next announcement in
the sequence. We can now prove that such protocols can never establish common
knowledge of purely propositional facts.
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Theorem 4. Let C express common knowledge among set of agents Ag. Let M
be an epistemic model with actual world w such that M, w |= ¬Cφ, with φ purely
propositional. Then there is no protocol with

M, w |= [!φ−i00 ], . . . , [!φ−inn ]Cφ.

for any sequence (φ0, i0), . . . , (φn, in) in the protocol.

Proof. We show that ¬Cφ is an invariant of any restricted announcement.
Assume M, w |= ¬Cφ. Let (A, e) be an action model for announcement !ψ−i,

the announcement of ψ, restricted to Ag − {i}. Then A has events e and e′,
with pre(e) = ψ and pre(e′) = �. If M, w |= ¬ψ then the update does not
succeed, and there is nothing to prove. Suppose therefore that M, w |= ψ. Since
pre(e′) = �, the model M⊗A restricted to domain D = {(w, e′) | w ∈ WM} is
a copy of the original model M. Thus, it follows from M, w |= ¬Cφ that

M⊗A � D, (w, e′) |= ¬Cφ.
Thus, there is an C-accessible world-event pair (w′, e′′) in D with

M⊗A � D, (w′, e′′) |= ¬φ.
Since φ is purely propositional, we get from this that:

M⊗A, (w′, e′′) |= ¬φ.
Observe that since common knowledge is preserved under model restriction,
absence of common knowledge is preserved under model extension. The C-
accessible world-event pair (w′, e′′) in M ⊗ A � D will still be C-accessible in
M ⊗ A. Therefore, it follows that M ⊗ A, (w, e′) |= ¬Cφ. By the construc-
tion of M ⊗ A, we get from this that M ⊗ A, (w, e) |= 〈i〉¬Cφ, and therefore
M⊗A, (w, e) |= ¬Cφ, by the definition of common knowledge.

It follows immediately that no protocol built from restricted announcements
can create common knowledge of propositional facts.

The case of the two generals planning a coordinated attack on the enemy, but
failing to achieve common knowledge about it [16,17] can be viewed as a special
case of this theorem.

If there are just two agents i, j, the only way for agent i to send a restricted
message is by allowing uncertainty about the delivery. If i, j are the only agents,
and i knows φ then the restricted message !φ−j conveys no information, so
the only reasonable restricted announcement of φ is !φ−i. The upshot of this
announcement is that the message gets delivered to j, but i remains uncertain
about this. According to the theorem, such messages cannot create common
knowledge. Initial situation:

w0 : p w1 : p

b



148 J. van Eijck and Y. Wang

Update action for general a (left) and general b (right):

e0 : p e1 : �

a

e0 : p e1 : �

b

Situation after first message from general a:

p p p

a b

Situation after update by a followed by update by b:

p p p p

b a b

And so on . . .
Now look at the case where restricted announcements are replaced by non-

public belief revisions. Then the power of restricted belief change turns up in the
following example. We start out from the initial situation again, and we update
using the action model for non-public belief change:

e0 : {b �→ �bp} e1 : ε

a

Here is the update result (after minimalisation under bisimulation):

p p

b

The example shows that it is possible to achieve common safe belief in p in a
single step, by means of a non-public belief change.
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Abstract. We present an implementation of the domain-theoretic Picard method
for solving initial value problems (IVPs) introduced by Edalat and Pattinson [1].
Compared to Edalat and Pattinson’s implementation, our algorithm uses a more
eÆcient arithmetic based on an arbitrary precision floating-point library. Despite
the additional overestimations due to floating-point rounding, we obtain a sim-
ilar bound on the convergence rate of the produced approximations. Moreover,
our convergence analysis is detailed enough to allow a static optimisation in the
growth of the precision used in successive Picard iterations. Such optimisation
greatly improves the eÆciency of the solving process. Although a similar optimi-
sation could be performed dynamically without our analysis, a static one gives us
a significant advantage: we are able to predict the time it will take the solver to
obtain an approximation of a certain (arbitrarily high) quality.

1 Context

Edalat and Pattinson [1] have introduced a domain-theoretic interpretation of the Picard
operator and implemented an initial value problem (IVP) solver based on this interpre-
tation. Amongst its strong points is the property that not only it gives validated results,
i. e. it gives an enclosure for the solution (assuming the IVP is Lipschitz) over the whole
time range up to a certain point, but also it is complete in the sense that convergence is
guaranteed. I.e., the enclosure can be improved to be arbitrarily close to the solution by
repeating the Picard iteration step. Moreover, the distance from the solution is shrinking
exponentially with the number of iterations.

Methods based on fixed precision floating-point interval arithmetic used commonly
in validated solvers lack such convergence properties. Nevertheless, as the authors indi-
cate, their method is not particularly eÆcient compared to time-step simulation methods
(eg Euler or Runge-Kutta.1) This is caused mainly by the fact that each Picard iteration
takes much longer than the previous one due to the doubling of the partition density and
a fast increase in the size of the rational numbers that describe the enclosure.

We have addressed these problems, improving on [1] by:

– Using a more eÆcient arithmetic, i. e. arbitrary precision floating-point numbers
instead of rationals, while obtaining very similar convergence results;

� Funded by EPSRC grant EP�C01037X�1.
1 For a domain-theoretic account of such a method, see [2].

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 149–163, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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– Identifying and decoupling various sources of approximation errors (i. e. Picard it-
eration, integration partition density, field truncation and rounding error, integration
rounding error);

– Allowing a finer control over increases in aspects of approximation quality and
associated increases in computation e�ort in subsequent iterations;

– Identifying a scheme to determine how the e�ort should be increasing in subsequent
iterations so that it is close to optimal (this scheme is static—e�ort increases for all
planned iterations are determined before performing the first iteration);

– Providing a fairly accurate prediction of how long each iteration of this optimised
algorithm will take, parametrised only by the duration of basic arithmetic opera-
tions and several numerical properties of the IVP.

We first formalise the basic solver algorithm based on Picard iterations (Section 2),
then conduct a detailed analysis of its convergence properties (Section 3), deduce the
promised static e�ort increasing scheme (Section 4) and analyse its timing properties
(Section 5). In Section 6 we compare our solver and results to some other available
validated IVP solvers and outline our plans.

Remark 1. Due to lack of space, we have only included the proof of Theorem 1 in
Appendix A. More details and proofs can be found in the extended version [3].

2 Implementation of Picard Iteration

Recall that an IVP is given by equations y� � f (y), y(0) � a0 with a0 � �
� and the

field f : �� � �
�. If the field is Lipschitz, the IVP has a unique solution y: � � �

�.
A Domain-Theoretic Picard solver consists in constructing a sequence of improving
enclosures by an approximate interval version of the Picard operator

yk�1(t) � a0 �

� t

0
f (yk(x)) dx�

2.1 Approximating Reals and Functions

Before we can present the solver, we need to introduce a few concepts related to the un-
derlying arithmetic. Firtly, we provide notation for interval arithmetic based on floating-
point numbers that is used to implement exact real arithmetic in the style of iRRAM [4]2

and RealLib [5].

Definition 1 (floating-point number, granularity). In our framework, a floating-point
number is either one of the special values �0, �0, ��, ��, NaN3 or a quadruple
f � (s� g� e�m) consisting of: sign s � ��1��1�, granularity g � �, exponent e �

��2g��2g
� 1� � � � � 2g � 1� 2g� and mantissa m � �0� 1� � � � � 2g � 1�. The intended value of

f is � f� � s � (1 � m
2g ) � 2e�

2 �����	���������	�����������������
3 Not a Number.

www.informatik.uni-trier.de/iRRAM/
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Note that the overall bit size of the representation is determined by the granular-
ity g. Also the computation time taken by primitive arithmetic operations depends
chiefly on g.

Definition 2 ( �g, �, ��g� �� ). For each natural number g � �, we write the set of
floating-point numbers with granularity g � � as �g, and by � we mean the union�

g�� �g. Also let (��g��) be the poset of all the intervals with floating-point numbers of
granularity g as their end-points ordered under the superset relation, ie:

��g � �[x� y] 	 x� y � �g� and 
�� � � ��g : � � � � � � �� (1)

Let �� �
�

g�� ��g be partially ordered under the analogous superset relation.

It is clear that ��0  ��1  � � �  ��  ��� where ��� denotes the interval Scott-domain
over � � �������. Moreover, �� is a countable basis of ���.

Assume that we need to compute a function f : �� � �. In our floating-point arith-
metic we would represent such a function by a computable ��f : �� � ��

� � ��. The
first parameter is an index of accuracy, which determines the precision of the compu-
tation process4 and the granularity of the result. By fixing the accuracy to i, we get��f (i� ) : ��� � ��, which we simply write as ��fi. We require that with increasing i,
these functions converge to some �f : ���

� � ���, which has to be an extension of f .

Definition 3 (width of interval and function)
For any interval � � [�� �] � ���, w(�) � ��� is the width of �. We extend this to the
width of a box � �

�
�1� � � � � ��

�
� ��

�
� by w(�) � max

�
w(�i) 	 i � �1� � � � � ��

�
. Finally,

the width of a function �f : ���
� � ��

�
� is defined as w( f ) � sup

�
w( f (x)) 	 x � ��

�

�
.

Definition 4 (Interval Lipschitz, Hausdor� Lipschitz from Below (HLFB) [7])
1. Assume that width is defined over sets of intervals A and B. The function f : A � B

is interval Lipschitz with constant L f if 
� � A : w( f (�)) � L f � w(�)

2. If posets A and B are endowed with distance functions dX : X � X � �, (X �

�A� B�), the monotone function f : A � B is Hausdor� Lipschitz from Below if
and only if �L f � � 
�� � � A : � � � � dB( f (�)� f (�)) � L f � dA(�� �)

Definition 5 (Uniformly Hausdor� Lipschitz from Below (UHLFB))
Assume that A and B have width defined over their elements. The function f : A � B

is uniformly Hausdor� Lipschitz from Below if
�L f �Ef � � : 0 � L f �Ef � � & 
� � A : w( f (�)) � L f w(�) � Ef

2.2 Overview of the Solver

Recall that we want to solve an IVP y� � f (y), y(0) � a0 for y : � � �
�, (� � 1) over

some time domain. In what follows, we focus on the case � � 1 and the time domain

4 For our purposes, the term accuracy refers to the width of the computed interval while preci-
sion, on the other hand, is a measure of accuracy for the basic field operations over floating-
point numbers. For more details, see [6].
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Fig. 1. Three main stages of the Picard algorithm

[0� 1]. Generalizing to any higher dimension or other time domain is straightforward. To
implement the field f : �� �, we pick a sequence�f j satisfying���f j 	 j � �� � �f as
discussed in subsection 2.1. Recall that accuracy index j determines the granularity of
the calculation, which we shall denote by g j. Thus we have x � ��gj �� �f j(x) � ��gj .
We also assume lim j�� g j � �.

Each solution enclosure yk computed by the solver is a pair of piece-wise constant
(���) fucntions with the domain [0� 1] partitioned into 2n segments of the same size.
We call the number n the depth of the partition. In each Picard step, the field is applied
point-wise to the enclosure yk, giving another ��� function. This function is integrated,
which leads to a piece-wise linear (���) function ỹk�1. Finally, a process of conservative
flattening converts this ��� object into a ��� one, ready to go through the next step of
the iteration (see Figure 1).5

More formally, the solver follows the algorithm shown in Figure 2 on the facing
page. In the algorithm, PWLtoPWC refers to the operator that turns a piece-wise linear
function into a piece-wise constant one (see Figure 1). The depths �n j� and iterations
per depth �k j� are left unspecified at this stage except that we require lim j�� n j � �.
In Section 4 we discuss how the increases in depth and granularity can be determined
statically.

5 We have not specified how one obtains the initial enclosure y0. In our tests we were able to
guess a uniform bound b over our time domain, i.e. we could set y0(t) � b. In general, one can
obtain y0 using a validated time-step method with fairly large time step. For an invalid y0, the
enclosures will eventually become inconsistent.
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yn0
0 = initial piece-wise constant enclosure of depth n0
for j = 0..∞ loop
for k = 1..k j loop

ỹn j

k = integrate If j(y
nj

k−1)
ynj

k = PWLtoPWC (ỹn j

k )
end loop

ynj+1

0 = yn
k j

converted to depth n j+1

end loop

Fig. 2. Implementation of Picard method

In most applications, we can determine bounds for the field’s domain and range.
Thus we will assume that there are numbers N� M � 0 such that


 j � � : ��f j : �� � [�N� N] � �� � [�M� M] (2)

3 Convergence Analysis

In this section, we analyse the convergence properties of the inner loop of the algorithm
in Figure 2. This will first and foremost confirm that the whole process converges but,
more importantly, will o�er an important tool for static, i. e. a priori, analysis of the
convergence properties, allowing us to make informed choices for the increases in depth
and granularity.

While we focus on the inner loop only, we can drop the subscript j and work with a
fixed depth n and granularity g. Moreover, we drop the superscript and write yk and ỹk,
instead of y

nj

k and ỹ
n j

k , respectively.

3.1 Convergence Analysis: No Round-O� Errors

Each ��� solution enclosure partitions the time domain into 2n sub-intervals, which we
denote I1� I2� � � � � I2n . Thus, any point t � (0� 1] falls into the sub-interval with index
�t2n�, i. e. t � ��t2n� (See Figure 1).6

According to the algorithm in Figure 2, we would expect 
t � �p:

ỹk(t) � a0 �

p	1	
m�1

w(�m)�f j(yk	1(�m)) � (t � �p)�f j(yk	1(�p)) (3.a)

ỹk(t) � a0 �

p	1	
m�1

w(�m)�f j(yk	1(�m)) � (t � �p)�f j(yk	1(�p)) (3.b)

Next, the algorithm traps the piece-wise linear result ỹk in a tight piece-wise constant
approximation yk using the following formulae:

6 �x� is the smallest integer greater than or equal to x, usually known as the ceiling of x.
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yk(t) � min



ỹk(�p)� ỹk(�p)

�
(4.a)

yk(t) � max
�
ỹk(�p)� ỹk(�p)


(4.b)

Note that 
m � �1� � � � � 2n� : w(�m) � 2	n. We also make the following assumptions
before arriving at the final formula:

1. The field f is Lipschitz and its approximation �f j is uniformly Hausdor� Lips-
chitz from Below. We fix some numbers � and E with the property declared in
Definition 5:


x � ��� : w(�f j)(x) � � � w(x) � E (5)

2. For a function h which is constant on an interval x � [x� x], we abuse the notation
and define h(x) � h(m(x)), where m(x) � (x � x)	2. As the solution is considered
to be piece-wise constant over each interval �m, we write yk(�m) instead of yk(t),
where t � �m, accordingly.

Theorem 1 (Inner loop width improvement without round-o� errors)
Under the above assumptions, we can bind the width of the solution enclosure as fol-
lows:

Case (� � 0) and (E�� � 1)

w(yk(�p)) � w(y0)
�
�

2n

�k�p � k � 1
k

�
�

�
w(a0) �

M
2n
�

�
E

�

��
er (6.a)

Case (� � E) including (� � 0)

w(yk(�p)) � w(y0)
�
�

2n

�k�p � k � 1
k

�
�

�
w(a0) �

M
2n
� E

� p
2n

��
er (6.b)

where in both cases r � (p � k � 1)�	2n.

Proof See Appendix A.

Remark 2 Please note that the index p � �t2n� depends on both t and n.

Note that formulae (6.a) and (6.b) deal with the inner loop only, hence they rely on the
parameter j. In particular, to discuss the outer loop, �, E and r should be thought of as
� j, E j and r j, respectively.

Theorem 1 gives an upper bound on the width of the result after one run of the outer
loop. In what follows it will be demonstrated that even at this stage with appropriate
choices of k and n one may get as narrow an interval as one wishes. However, as we will
discuss in Section 4, a well worked out strategy would provide a list of these parameters
for each run of the outer loop so that the convergence to the result is attained in a nearly
optimal manner.
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Proposition 1. Assume that 
 j : � j � � for some � � �7 and w(a0) � 0. Then for any
point t � (0� 1) and 
 � 0, we can have w(yn

k(t)) � 
 with suitable choices of n, k and j.

Proof (Sketch). Here we only consider the case � � 0, therefore formula (6.a) will
be the appropriate one. Note that lim j�� E j � 0, as we have ���f j 	 j � �� � �f .
Considering that w(a0) � 0, we rewrite the right hand side as follows:

w(y0)

�
�k

k!

�������
�k

��1(p � �)

2n

������ �
�

M
2n
�

�
E j

�

��
er j

Let us take t � (0� 1) and assume some 
 � 0 is given. We first pick some k for which
(��1)k

k! � �
w(y0) . Then for this k we find j0 and n0 such that for all j � j0 and n � n0:

1. n � log2(max�( k
1	t )�

4Me�(�0�1)

�
�), which enforces p�k	1

2n � 1, and ( M
2n )er j � �

4

2. E j �
��e�(�0�1)

4 , whic enforces
�

E j

�

�
er j � �

4

Straightforward calculation shows that these conditions make (6.a) smaller than 
. ��

So far we have assumed that the basic arithmetic operations have no round-o� errors.
In other words, if � is any of addition, subtraction, multiplication or division:


�� � � �� : � � � � �t1 � t2 	 t1 � �� t2 � �� (7)

where � on the left hand side is the “interval version” of the binary operator � on the
right hand side. Our framework accommodates imprecision, the case of which will be
analysed next.

3.2 Convergence Analysis: Round-O� Errors

We devise operation �̊ in such a way that 
� � ��g1 � � � ��g2 : � �̊ � � [r� s] where
[r� s] � ��g3 and g3 � max�g1� g2�. The operation �̊ is seen as the imprecise counterpart
of �. Being imprecise does not mean giving up on soundness, i. e. 
t1 � �� t2 � � : t1 �
t2 � [r� s]. In other words, instead of aiming for an exact result, we contend with an
interval [r� s] which encloses the result as tightly as possible without increasing the
number of bits as dictated by the input arguments.

In order not to let this liberty take the better of the convergence, we postulate that for
each natural number g � �, a bound 
g � 0 exists such that:


� � ��g1 � � � ��g2 : w(� �̊ �) � (1 � 
g) w(� � �) (8)

in which the operator �̊ is the imprecise counterpart of � and g � max�g1� g2�.

Definition 6 (Enclosure Constant C)
Let f : ��� � �� with f̊ : ��� � �� as its imprecise counterpart such that:���������


� � ��g1 � � � � � ��g� : f̊ (�) � ��g� g � max�g1� � � � � g��


g � � : � 
 f̊ �g � 0: 
� � ��g1 � � � � � ��g� : w( f̊ (�)) � (1 � 
 f̊ �g) w( f (�))

7 This assumption holds in almost all cases of practical interest. In fact, we can just take this
upper bound and assume � j : � j � �.
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We call (1 � 
 f̊ �g) an enclosure constant of f̊ at granularity g, and denote it by C(g� f̊ ).
When f is unambiguously understood from the context we simply write 
g and Cg.

Again, we stipulate that:

1. There exists 
g � 0 such that for all basic arithmetic operators f̊ , we have 
 f̊ �g � 
g.

2. There exists Æg � 0 such that for all f̊ � � �̊�f i�i�� the inequality 
 f̊ �g � Æg holds.
3. limg��(
g � Æg) � 0

In the analysis that follows, it is assumed that for some minimum g0 � �, the whole
computation is carried out with numbers having granularities at least as big as g0. There-
fore, knowing that g0 may be increased as needed to reduce the e�ect of round-o� error,
we define:

Definition 7 (C� D). For the minimum granularity g0 used during one run of the main
algorithm, we define C � 1 � 
g0 and D � 1 � Æg0 .

Once again, the convergence analysis is split into two cases, similar to those in
Theorem 1.

Theorem 2 (Inner loop width improvement including round-o� errors)
Under the assumptions of Theorem 1 but taking account of rounding, we have:

Case (� � 0) and (E�� � 1)

w(ẙk(�p)) � w(ẙ0)
�
DCp�4 �

2n

�k �p � k � 1
k

�

�

�
Cp�5w(a0) �C3 M

2n
�Cp�4D

�
E

�

��
er (9.a)

Case (� � E) including (� � 0)

w(ẙk(�p)) � w(ẙ0)
�
DCp�4 �

2n

�k �p � k � 1
k

�

�

�
Cp�5w(a0) �C3 M

2n
�Cp�4DE

� p
2n

��
er (9.b)

where in both cases r � (p � k � 1)
�
DCp�4 �

2n

�
�

Proof See the extended version [3].

4 Optimising the IVP Solver

Theorem 2 is used to great e�ect as we finalise the solver algorithm, trying to finetune
the sequences �n j� �k j� and �g j� and thus distributing the computational e�ort between
integration depth and floating-point granularity.
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Firstly, we set n j � j without loss of generality since k j can be 0 for certain j’s.
Now k j will indicate after how many Picard steps the depth should be increased by one.
The numbers g j indicate whether or not to raise granularity and by how much whenever
depth is increased.

To determine �k j� and �g j� one could use a modified algorithm that di�ers from the
original one in that it terminates the inner loop only when the width improvements
fall below some threshold. Also, whenever the increase in depth does not lead to a
significant width improvement, the algorithm will backtrack and restart the inner loop
with an increased granularity. If even increasing both the depth and granularity does
not lead to a significant improvement, the algorithm will try various combinations of
increases in depth and granularity in independent executions until it finds a combination
that produces an improvement above the set threshold.

The problem with the above algorithm is that it is very ineÆcient and its run-time is
rather unpredictable. We execute this algorithm but replace a genuine Picard step with
a simulation based on the appropriate formula from Theorem 2. To make this possible,
we also have to replace solution enclosures with upper bounds on the width of the
enclosures at the furthest time point of interest.

This simulation is very fast as the formula takes linear time with respect to the num-
ber of iterations k to evaluate.8 Thus we can say that the simulation provides a viable
static prediction of the convergence behaviour and a method to a priori determine finite
sequences �k j�, �g j� that are guaranteed to produce an enclosure with a desired precision
using a nearly optimal computation e�ort.

5 Prediction of Computation Time

In Section 3, we studied the overall rate at which the shrinking intervals generated by
the main algorithm converge to the solution. Here in this section we try to grasp the
number of operations needed to run the algorithm with certain input arguments. To this
end, we ought to put forward one acceptable way of breaking up the procedure.

Theorem 3 (complexity function �). Assume that for any required binary operator
� : �2 � �, the complexity function �� : � � � gives an upper bound for the number
of computational steps carried out to calculate x � y.

Then the function � : �4 � � defined by


k � � � p � �0� � � � � 2n� : �(k� p� n� g) � 

k	
j�1

�
p � j � 1

j

�
(10)

where
 � 2 (�

�̊
(g) � �
̊(g)) � �

�

�̊fi
(g) � �min(g) � �max(g)

gives an upper bound on the number of computation steps needed to compute the value
of the solution of the IVP over the sub-interval with index p at iteration k and integration
depth n with granularity g.

8 ... a time negligible compared to that of Picard iterations, which according to formula (10)
below is exponential in k.
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Whenever g and n are clear from the context, we just write �(k� p) instead of �(k� p� n� g).
Proof (Main idea)


k � � � p � �0� � � � � 2n� :

�����������
�(k � 1� p � 1) � �(k � 1� p) � �(k� p � 1) � 

�(k� 0) � �(0� p) � 0
(11)

��

6 Conclusion

This work has mainly been built on the work of Edalat and Pattinson [1]. However,
works on validated solutions for initial value problems abound. Notable examples in
our view are ValEncIA [8], VNODE [9] and COSY [10].

The main di�erence between our work and that of Edalat and Pattinson’s [1] on the
one hand, and the aforementioned on the other is the fact that theirs are not only based
on fixed-point floating-point arithmetic, but also the emphasis is mostly on practical use.
We believe that our implementation enjoys the positive points of all other works in that
not only it lends itself well to analysis while sitting nicely in a domain theoretic model,
but also it avoids the worst causes of ineÆciency encountered by methods similar to
Edalat and Pattinson’s [1].

Yet another important motivation for us lies in what we believe is the first major
consideration of parallel validated IVP solving, for which we have found the Picard
method most suitable. The convergence and time-complexity analysis as presented here
is readily extended to the parallel scenario, where each decision to split a domain and
assign the computation task to di�erent processors for each time sub-domain can be
guided prior to the actual computation process occurring.

Notwithstanding the fact that we believe the framework has vast potentials for devel-
opment, there are specific tangible choices for future directions:

1. In more immediate future, experiments must be carried out to show how closely the
bounds from Theorems 1 and 2 reflect real scenarios arisen from various classes of
IVPs. Our experiments so far have given promising results but they are not suÆ-
ciently extensive to draw reliable conclusions.

2. The approximation and representation of functions can take various forms. Most
notably, piece-wise linear or piecewise polynomial representations usually give
much better convergence when incorporated in our method of IVP solving. Nev-
ertheless, extending our results to these representations seems to need considerable
e�ort due to the substantial increase in complexity.
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A Proof of Theorem 1

Based on formulae (3.a–3.b) and (4.a–4.b) on pages 153–154, one can get an estimate
on the width of the piece-wise constant approximation to the solution:

w(yk(t)) � 	 yk(t) � yk(t) 	

(Subtracting (3.a) from (3.b)) � w(a0) �
p	

m�1

w(�m)
�
�f j(yk	1(�m)) � �f j(yk	1(�m))]

�

(Accommodating (4.a) and (4.b)) �w(�p) min
�
	 �f j(yk	1(�p)) 	� 	 �f j(yk	1(�p)) 	


� w(a0) �

p	
m�1

w(�m)
�
�f j(yk	1(�m)) � �f j(yk	1(�m))]

�
(Using (2) on page 153) �w(�p)M

We can safely consider each �f j to be uniformly Hausdor� Lipschitz from Below
(Definition 5 on page 151). Thus, we get:

w(yk(�p)) � w(a0) � w(�p)M
p	

m�1

w(�m)
�
L�f j

w(yk	1(�m)) � E�f j

�
(12)

http://www-users.aston.ac.uk/~farjudia/AuxFiles/2008-Picard.pdf
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According to assumption (5) on page 154 and as we have 
m � �1� � � � � 2n� : w(�m) �
2	n, an easier to handle bound on the term (12) on the preceding page would be:

p	
m�1

w(�m)
�
L�f j

w(yk	1(�m)) � E�f j

�
�

�

2n

p	
m�1

w(yk	1(�m)) �
p
2n

E

Therefore, by defining

�� �
�

2n
E � w(a0) �

M
2n

(13)

one can derive:

w(yk(�p)) �
�

2n

p	
m�1

w(yk	1(�m)) � �p

(induction on k) �
�

2n

p	
m1�1

��������
�������� �2n

m1	
m2�1

w(yk	2(�m2 ))

�������� � �m1

�������� � �p

�

�
�

2n

�2 p	
m1�1

m1	
m2�1

w(yk	2(�m2 )) �

��������� �2n

� p	
m1�1

�m1

�������� � �p

�

�
�

2n

�3 p	
m1�1

m1	
m2�1

m2	
m3�1

w(yk	3(�m3 )) �

�
�

2n

�2 p	
m1�1

m1	
m2�1

�m2 �

�
�

2n

� p	
m1�1

�m1 �

�p

���

(Expanding (13)) � w(y0)
�
�

2n

�k p	
m1�1

m1	
m2�1

� � �

mk�1	
mk�1

1 � (14.a)

�
E

2n

� k	1	
��0

��������� �2n

�� p	
m1�1

m1	
m2�1

� � �

m�	
m��1�1

1

�������� � (14.b)

�
w(a0) �

M
2n

� k	1	
��0

��������� �2n

�� p	
m1�1

m1	
m2�1

� � �

m��1	
m��1

1

�������� (14.c)
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Note that w(y0) in term (14.a) on the preceding page is the width of the interval function
y0 — the initial estimate — as defined in subsection 2.1.

Now, in order to be able to carry the derivation forward, we state:

Lemma 1 For any p� k � � � �0�:

p	
m1�1

m1	
m2�1

� � �

mk	
mk�1

1 �
p(p � 1) � � � (p � k � 1)

k!

�

�
p � k � 1

k

�

�

�
p � k � 1

p � 1

�

Proof Left to the reader. ��

Lemma 2 Consider the real number � � 0 together with the natural numbers p� k� n �
1, then:

k	
j�0

�
p � j � 1

j

��
�

2n

� j

� er

where

r �

�
�(p � k � 1)

2n

�
(15)

Proof

k	
j�0

�
p � j � 1

j

��
�

2n

� j

� 1 �
k	

j�1

p(p � 1) � � � (p � j � 1)
j!

�
�

2n

� j

�

k	
j�0

r j

j!
�

�	
j�0

r j

j!
� er

��

Using lemmata 1 and 2 it is easier to get bounds on terms (14.a), (14.b) and (14.c)
on the facing page. For term (14.a) one gets:

w(y0)
�
�

2n

�k p	
m1�1

m1	
m2�1

� � �

mk�1	
mk�1

1 � w(y0)
�
�

2n

�k p(p � 1) � � � (p � k � 1)
k!

(16.a)

while term (14.c) can be bounded by:

�
w(a0) �

M
2n

� k	1	
��0

��������� �2n

�� p	
m1�1

m1	
m2�1

� � �

m��1	
m��1

1

�������� � �
w(a0) �

M
2n

�
er (16.b)

using Lemma 2 with r as in 15. To get a bound on term (14.b), let us first consider
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T �

k	1	
��0

��������� �2n

�� p	
m1�1

m1	
m2�1

� � �

m�	
m��1�1

1

��������
We develop two bounds which cover all foreseeable cases:

(� � 0) and (E�� � 1) : In this case, we go down the following route and consider:

�
�

2n

�
T �

k	
��1

�
�

2n

���p � � � 1
�

�
(Lemma 2) � er

where again r is as in 15. Thus T � er2n	� and as term (14.b) is just ET	2n the
bound is �

E

2n

� k	1	
��0

��������� �2n

�� p	
m1�1

m1	
m2�1

� � �

m�	
m��1�1

1

�������� �
�
E

�

�
er (16.c)

By combining (16.a), (16.b) and (16.c) we arrive at the first version of the bound:

w(yk(�p)) � w(y0)
�
�

2n

�k�p � k � 1
k

�
�

�
w(a0) �

M
2n
�

�
E

�

��
er (16.d)

(� � E) including the case (� � 0) : In this case we cannot simply multiply and di-
vide by terms having � as a factor in their numerator. Instead, we factorize T in
another way. First we consider the simple fact that for any p � 1:


� � �1� � � � � k� :
p � � � 1

�
� p (�)

Therefore:

T �

k	
��1

�
�

2n

��	1�p � � � 1
�

�

�
expanding the binomial term

�
�

k	
��1

�
�

2n

��	1 � p(p � 1) � � � (p � � � 1)
�!

�

�
using (�) above

�
� p

k	
��1

�
�

2n

��	1 � p(p � 1) � � � (p � � � 2)
(� � 1)!

�

�
substituting j for � � 1

�
� p

k	1	
j�0

�
�

2n

� j � p(p � 1) � � � (p � j � 1)
j!

�
�
Lemma 2 on the preceding page

�
� per
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which implies that in this case, the bound on term (14.b) is:

�
E

2n

� k	1	
��0

��������� �2n

�� p	
m1�1

m1	
m2�1

� � �

m�	
m��1�1

1

�������� � E

� p
2n

�
er (16.e)

Thus, combining (16.a), (16.b) and (16.e) will result in the second version of the
bound (16.d) on the facing page:

w(yk(�p)) � w(y0)
�
�

2n

�k�p � k � 1
k

�
�

�
w(a0) �

M
2n
� E

� p
2n

��
er
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Abstract. In classical logics, the meaning of a formula is invariant with
respect to the renaming of bound variables. This property, normally
taken for granted, has been shown not to hold in the case of Information
Friendly (IF) logics. In this work we propose an alternative formalization
under which invariance with respect the renaming of bound variables is
restored. We show that, when one restricts to formulas where each vari-
able is bound only once, our semantics coincide with those previously
used in the literature. We also prove basic metatheoretical results of the
resulting logic, such as compositionality and truth preserving operations
on valuations. We work on Hodges’ slash logic (from which results can
be easily transferred to other IF-like logics) and we also consider his
flattening operator, for which we give a game-theoretical semantics.

1 Introduction

Independence Friendly logic (IF, for short) was introduced and promoted as a
new foundation for mathematics by Jaako Hintikka over a decade ago [9,10].
Closely related to Henkin’s logic of branching quantifiers [8,16,7,2], IF is an
extension of first-order logic where disjunctions and existential quantifiers may
be decorated with denotations of universally-quantified variables. The intended
meaning of a formula ∀x∃y/∀xϕ is that the value for y may not depend on x
(in other words, it may not be function of x). This notion is nicely formalized
using a two player game between Abélard and Elöıse, which, because of the
independence restrictions, is of imperfect information.

It was conjectured by Hintikka that one could not formulate IF seman-
tics in a composable way [9]. This was promptly rebutted by Hodges in [11],
where he achieves compositionality by taking as the interpretation of a formula
ϕ(x1, . . . , xn) over the domain A, the set of sets of n-tuples (called trumps) for
which Elöıse has a uniform winning strategy.

Two things are worth observing. First, in [11] Hodges introduced two slight
modifications in syntax and semantics, namely: conjunctions and universal quan-
tifiers may also be decorated with restrictions, and restrictions on any of the
player’s choices may range also over any of his previous choices1. Hodges later
1 In Hintikka’s presentation [9], Elöıse is not allowed to take into account her previous

choices. For implications of this fact see, e.g. [14].

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 164–178, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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coined the name slash logic for his formulation and noticed that many writers
have transferred the name ‘IF logic’ to slash logic, often without realising the
difference [12]. We will use the term IF-like logics to encompass this variety of
related logics. In [13], Hodges shows that even if one restricts to Hintikka and
Sandu’s original formulation of IF, compositionality can be obtained. The second
thing to note is that in both papers Hodges considers only the syntactic frag-
ment where each variable may be bound only once. The underlying assumption
is that, given an arbitrary formula, one can appropriately rename its variables,
so no generality is loss. In the light of later findings, it is not obvious whether
this is was a reasonable assumption.

Caicedo and Krynicki [4] proved a prenex normal form theorem for slash logic.
To account for arbitrary formulas, where variables occur in any order, and may
get rebound, they used compositional semantics in the line of Hodges, but with
n-tuples replaced with valuations. This extension seemed so natural that in later
papers it was taken as the standard semantics of slash logic.

Based on this formulation, in [14], Janssen pointed out several strange prop-
erties of these logics. At the root of them lies the idea of signaling, i.e., “the
phenomenon that the value of a variable one is supposed not to know, is avail-
able through the value of another variable” [15]. He observes that if variables
are reused, signaling may be blocked and, thus, the truth-value of formulas that
only differ on bound-variables may differ. This can even be the case of formulas
of IF-logic without restrictions, which would challenge Hintikka’s claim of IF
being a conservative extension of classical logic [9].

A systematic analysis of signaling in IF-like logics was later performed in [15],
where several claims of “equivalence of formulas under syntactic transforma-
tions” made in [4] are questioned due to signalings that may get unexpectedly
blocked. These results were fixed in [3] by restating them in a much weaker sense.

Summing up, on the one hand, we have a family of logics, aiming to be a
conservative extension of first-order logic, for which several results have been
proved, but that hold only for the regular fragment. On the other hand, we have
that the attempts to formulate general results for the whole fragment failed. In
the face of this, Dechesne advocated for the restriction of IF-like logics to the
regular fragment, where no rebinding of variables occur (cf. Section 7.5 of [6]).

In this paper, we argue that there is no real need to restrict IF-like logics
to regular formulas and that, in fact, most, if not all, of previous results can
be generalized to the irregular case in a safe and natural way. In a nutshell, we
claim that classical valuations are simply not adequate to formalize independence
restrictions in a context where variables can get rebound.

In Section 2 we discuss briefly the interaction between irregular formulas and
classical valuations with respect to signaling. This motivates Section 3, where
we avoid these problems using alternative semantics, that are equivalent for the
regular fragment. In Section 4 we consider also the flattening operator ↓, intro-
duced by Hodges in [11] and illustrate that irregular formulas can be handled
uniformly also in this setting; while doing this, we provide a new (to the best of
our knowledge) game semantics for this logic. All the proofs are in Appendix A.
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2 Preliminaries

2.1 Syntax

From here on, we restrict ourselves to Hodges’ slash logic (but without indexed
disjunctions) [11,12], in which Hintikka’s IF logic can be trivially embedded.
Formulas are built out of an infinite supply of constant symbols, function sym-
bols and relation symbols just like in first-order logic, using the following set of
connectives: ∼, ∨/y1,...,yk

and ∃x/y1,...,yk
, where y1, . . . , yk stands for a set of

variables. The derived connectives ∧/y1,...,yk
and ∀x/y1,...,yk

are defined in the
usual way. We will also write ∧, ∨, ∃x and ∀x for ∧/∅ , ∨/∅ , ∃x/∅ and ∀x/∅.
Following [4] we don’t impose any restriction on the variables occurring under
the slashes.

The sets of free and bound variables of ϕ, Fv(ϕ) and Bv(ϕ) respectively, are
defined in the usual way. Of course, variables that occur under slashes must be
taken into consideration; observe, for example, that if θ := ∃x/x,y[x = z] then
Fv(θ) = {x, y, z} and Bv(θ) = {x}.

Following Dechesne [6], we will say that a formula ϕ is regular whenever
Fv(ϕ) ∩ Bv(ϕ) = ∅ and there is no nested quantification over the same vari-
able. To follow Hodges’ presentation, when referring to regular formulas we will
sometimes make the context (i.e. the free variables in scope) a parameter of the
formula by writing: ϕ(x1, . . . , xn), where (x1, . . . , xn) is an n-tuple of distinct
variables such that Fv(ϕ) ⊆ {x1, . . . , xn}. Observe that this means that for a
fixed ϕ, ϕ(x, y) and ϕ(x, y, z) will generally denote two non-equivalent formulas.
See [11] for further details.

2.2 Semantics

We will consider two related semantics. On the one hand, there is Hodges’ trump
semantics, which we will call T-semantics. It is compositional and based on sets
of tuples but its formalization requires regular formulas with the context as a
parameter. On the other, we have Caicedo and Kynicki’s extension of trump
semantics to arbitrary formulas, which we will call V-semantics. It is based
on sets of valuations and has a natural game-based formulation from which
compositionality can be proved [4,3].

Let us begin with V-semantics. A formula ϕ is true in a modelM under a set
of valuations V , written M |=+ ϕ[V ], iff Elöıse has a valid strategy that, when
followed, wins every instance G(M, ϕ, v) (for v ∈ V ) of the classical satisfaction
game between Abélard and Elöıse. Dually, a formula is false, written M |=−
ϕ[V ], whenever Abélard has a valid strategy that is winning for every G(M, ϕ, v),
v ∈ V . For a strategy to be valid, it has to satisfy additional independence
conditions. For a formal presentation refer to [4,3].

Hodges avoided valuations in the first place by restricting to regular for-
mulas where the context is a parameter: a valuation for ϕ(x1, . . . , xn) is sim-
ply an n-tuple (a1, . . . , an). Let us say that v(a1,...,an) is a valuation such that
v(a1,...,an)(xi) = ai when 1 ≤ i ≤ n and v(x) = c, for some fixed c, otherwise;
then, intuitively, a trump (resp. cotrump) T for ϕ(x1, . . . , xn) in M, written
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M |=+ ϕ(x1, . . . , xn)[T ] (resp. M |=− ϕ(x1 . . . xn)[T ]), is just a set of n-tuples
for which Elöıse (resp. Abélard) has a strategy that is winning for every instance
of the game G(M, ϕ, v(a1...,an)) for (a1 . . . an) ∈ T . This can be alternatively
defined in a composable way; we include for reference such a formulation in
Appendix A and refer the reader to [11] for further details.

Notation. Thoughout this paper, “M |=± X iffM |=± Y ” will stand for “M |=+

X iff M |=+ Y , and M |=− X iff M |=− Y ”.

As usual, each of these semantics gives rise to a notion of formula equivalence.

V-equivalence: ϕ1 ≡V ϕ2 iff Fv(ϕ1) = Fv(ϕ2) and for all M and every set of
valuations V , M |=± ϕ1[V ] iff M |=± ϕ2[V ].

T-equivalence: Let x = x1, . . . , xn. ϕ1(x) ≡T ϕ2(x) iff Fv(ϕ1) = Fv(ϕ2) and
for all M and every T ⊆ |M|n, M |=± ϕ1(x)[T ] iff M |=± ϕ2(x)[T ].

2.3 Signaling Kicks in

It was first observed by Jannsen [14] that V-semantics and signaling don’t in-
teract well. Consider, for instance, the following example (from [14], section 7,
formulas (32) and (33)): θ1 := ∀x∀y∀z[x = y ∨ ∃u∃w/x[w �= x ∧ u = z]] and
θ2 := ∀x∀y∀z[x = y ∨ ∃y∃w/x[w �= x ∧ y = z]] Clearly, θ1 is a regular formula
while θ2 is not. Moreover, they only differ in the symbol used for a bound vari-
able: u vs. y. Since variable symbols are expected to be simple placeholders,
both formulas should be equivalent. Now, Elöıse has a winning strategy for θ1,
regardless the structure: f∨(v) = L if v(x) = v(y) and f∨(v) = R otherwise;
f∃u(v) = v(z); f∃w/x

(v) = v(y). Observe that Elöıse’s strategy for θ1 relies heav-
ily on signaling: she needs a value other than v(x) but her strategy function may
not depend on x; however, y is signaling such a value.

The problem is that this strategy is not winning for θ2: whenever Abélard
picks different initial values for x and y, Elöıse will be forced to reset the value
of y to that of z, breaking the global invariant of her strategy (i.e., blocking the
signal). In fact, it is not hard to show that for arbitrary structures, Elöıse has
no winning strategy for θ2 which implies that θ1 �≡V θ2.

Now, although this is an already known example, we feel its significance has
been overlooked. Variables (and specially those that are bound) ought to be a
mere syntactic device, a simple placeholder. They should bear no meaning in
itself. The only thing we should care about two bound variables x and y is that
they are distinct and, as such, stand for distinct placeholders. In that sense u,
v or w should be as good as y. In fact, we should expect to be able to drop
variables altogether and replace them with some equivalent syntactic device,
such as de Bruijn indices [5].

This notion is so crucial that it even has a name: α-equivalence. (for formal
definitions see any textbook on λ-calculus, e.g. [1]). In every sensible formalism,
α-equivalence implies equivalence. We already saw this does not hold in slash
logic under V-semantics in general and the following example shows that it
neither does restricted to regular formulas. Consider these α-equivalent, regular
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formulas: θ3 := ∃y∃z/x,y[z = x] and θ4 := ∃u∃z/x,u[z = x]. For ||M|| ≥ 2 and
V = {v | v(x) = v(u)} it is easy to see that M |=+ θ3[V ] but M �|=+ θ4[V ].

Invariance under α-equivalence is such a basic property that it is not surpris-
ing that neither Hodges nor Caicedo and Krynicki mention it in their papers.
However the latter two assumed it to hold and this lead to some flawed results
(see [15]). In the face of this, it is worth verifying that, fortunately, α-equivalence
does hold under T-semantics (the proof is on Section A.2).

Proposition 1. Let x = (x1, . . . , xn); if ϕ1(x) ≡α ϕ2(x) then ϕ1(x) ≡T ϕ2(x).

The fact that invariance under α-equivalence holds on regular formulas under
T-semantics but fails under V-semantics is, in our opinion, a clear indication
that this is neither a feature of these logics nor they should be restricted to the
regular fragment. V-semantics simply fail to generalize properly the meaning
given to the slashed connectives by the T-semantics.

3 Uniform Semantics for Regular and Irregular Formulas

Classical valuations are an inadequate device to formalize the semantics of un-
restricted IF-like formulas: under rebinding of variables, they simply fail to keep
track of all the previous choices, which is crucial in a setting of independence
restrictions. Our plan is, roughly, to replace valuations with tuples 〈s, p〉, where
s ∈ |M|ω is an infinite sequence of choices, and p is a mapping of variables into
positions of s. A variable x gets thus interpreted as s(p(x)). Observe one can
think of the composition s ◦ p as denoting a classical valuation2.

Using games, we will define what we call S-semantics, that is, the relations
M |=+ ϕ[S, p, h] and M |=− ϕ[S, p, h] where S is a nonempty set of sequences
taken from |M|ω, and h < ω can be regarded as indicating how many “previous
choices” are in scope. After checking that under this formalization some of the
nice properties of classical logics hold, we will verify that, on regular formulas,
S-semantics and T-semantics coincide.

The game G(M, ϕ, S, p, h) we are about to define deviates from the customary
semantic game for IF-like logics: it is a one-turn game where Abélard and Elöıse
pick functions instead of elements. There are two reasons for this. On the one
hand, we prefer this formulation since in this way the higher-order nature of
the logic becomes arguably more apparent. On the other, this game will be
generalized to an n-turn game in Section 4 to provide natural game-theoretical
semantics for Hodges’ flattening operator.

Before we go into the definitions, we need some notation for the manipulation
of functions (and, in particular, infinite sequences). Let f : X → Y , we denote
with f [x �→ y] the function such that f [x �→ y](x) = y and f [x �→ y](z) = f(z)
for all z �= x. As usual, if X ′ ⊆ X then f � X ′ : X ′ → Y will be the restriction
of f to X ′.
2 Almost all of our presentation can probably be done using sequences of finite length.

Apart from an arguably more cumbersome presentation, a downside of this would
be that s ◦ p would then represent a classical valuation but one with finite image.
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The board. The game is played over the syntactic tree of a formula. Every node
of the tree, except the ∼-nodes, belong to one of the players: those initially
under an even number of ∼-nodes belong to Elöıse, the rest belongs to Abélard.
The initial assignment of nodes to a player will be remembered along the game.
Furthermore, some nodes may be decorated with functions during the game:
∃-nodes can be decorated with any function f : |M|ω → |M|; ∨-nodes can be
decorated with any function f : |M|ω → {L,R}. Initially, these nodes have no
decoration. Plus, there is a triple 〈S, p, h〉 and a placeholder (initially empty) for
a sequence in |M|ω.

The turn. The turn is composed of two clearly distinguished phases. In the first
phase, both players decorate all their nodes with proper functions. The order in
which they tag their nodes is not important as long as they don’t get to see their
opponent’s choices in advance. For simplicity, we will assume they both play
simultaneously. For the second phase, we introduce a third agent, sometimes
known as Nature, that can be seen as random choices. Nature first picks some
sequence from S and puts it in the placeholder. Next, it proceeds to evaluate
the result of the turn using the following recursive procedure:

R1. If the tree is of the form ∼ψ, Nature replaces it with ψ and evaluation
continues.

R2. If the tree is of the form ψ1 ∨/y1,...,yk
ψ2, then its root must have been

decorated with some f : |M|ω → {L,R}. Nature then picks a sequence
r ∈ |M|ω such that r(i) = s(i) for every i /∈ {p(y1), . . . , p(yn)} ∪ {k |
k ≥ h}, where s stands for the sequence on the placeholder, and evaluates
f(r). Observe that the values the player was not supposed to consider
are replaced with arbitrary values prior to evaluating the function. The
tree then is replaced with ψ1 if the result is L or with ψ2 otherwise, and
evaluation proceeds.

R3. If the tree is of the form ∃x/y1,...,yk
ψ, then it must be decorated with some

f : |M|ω → |M|. Nature here also picks a sequence r ∈ |M|ω such that
r(i) = s(i) for every i /∈ {p(y1), . . . , p(yn)}∪{k | k ≥ h}, where s stands for
the sequence on the placeholder, and evaluates f(r). Let us call this value
b. Nature records this choice by replacing the sequence in the placeholder
with s[h �→ b]; x is bound to b by replacing p with p[x �→ h] and h is
incremented by one. Finally, the tree is replaced with ψ and evaluation
proceeds.

R4. Finally, if the root of the tree is of the form R(t1, . . . , tk), evaluation ends.
Elöıse is declared the winner of the match whenever this node belongs to
her and M |= R(t1, . . . , tk)[s ◦ p], or the node belongs to Abélard and
M �|= R(t1, . . . , tk)[s ◦ p]. In any other case, the winner is Abélard.

Winning strategies. A strategy for a player of the game G(M, ϕ, S, p, h) is just
the collection of functions used to decorate the syntactic tree of ϕ. Furthermore,
the strategy is winning if it guarantees that the player will win every match
of the game, regardless the strategy of the opponent and the choices made by
Nature. Observe this game is of imperfect information: Abélard and Elöıse must
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play simultaneously (i.e. ignoring the opponent move) and the initial valuation
is “randomly” picked by Nature. Therefore, some games are probably undeter-
mined, that is, none of the players have a winning strategy.

We are now ready to give our game-semantic notion of truth and falsity.
Observe, though, that this will be restricted to only certain p and h. The rationale
for this will become clear later (cf. Example 1 and Lemma 1).

Definition 1. We say that p : Vars→ ω and h < ω are a proper context for a
formula ϕ if p � Fv(ϕ) is injective and {p(x) | x ∈ Fv(ϕ)} ⊆ {0, . . . , h− 1}.

Definition 2 (|=+ and |=− for S-semantics). Given a formula ϕ, a suitable
model M, a nonempty set S ⊆ |M|ω and a proper context for ϕ, p : Vars →
ω and h < ω, we define: M |=+ ϕ[S, p, h] iff Elöıse has a winning strategy
for G(M, ϕ, S, p, h); M |=− ϕ[S, p, h] iff Abélard has a winning strategy for
G(M, ϕ, S, p, h).

When S is the singleton set {s} we may alternatively writeM |=+ ϕ[s, p, h] and
M |=− ϕ[s, p, h]. Furthermore, we will write M |=+ ϕ if M |=+ ϕ[|M|ω, p, h]
whenever p and h are a proper context for ϕ (and analogously for M |=− ϕ).

Example 1. Consider θ := ∃x [x �= y]. One would expect that for anyM with at
least two elements,M |=+ θ show hold. However, Elöıse has no winning strategy
on G(M, θ, S, p, h) when p(y) = h. The problem here is that the value selected
by Elöıse’s function for x, whatever it is, will be recorded in position h, thus
overwriting the value of y. Observe, though, that if p and h are a proper context
for θ, then it cannot be the case that p(y) ≥ h.

Example 2. Let us revisit the irregular formula θ2 from Section 2.3. We shall
verify that for any modelM,M |=+ θ2. For this, consider the following strategy
for Elöıse: f∨(s) = L if s(h) = s(h + 1) and f∨(s) = R otherwise; f∃y(s) =
s(h+2); f∃u/x

(s) = s(h+1). The reader should verify that this is essentially the
same strategy used for θ1 in Section 2. Observe that, for example, s(h+ 1) plays
the same role that v(y) played in the latter, except that by using an offset from
h (i.e., from the position in s where the value for the outermost quantifier was
recorded) instead of the variable name, we escape from the deathtraps created
by the rebinding of variables. In fact, Elöıse’s winning strategy in this example
works for any renaming of variables of θ2.

So far we have defined |=+ and |=− with respect to sets of sequences using a
game theoretical approach. We can also give a compositional characterization,
in the line of [11] and [4] (the proof of Theorem 1 is on Section A.3).

Definition 3. Let f : AB → C and let Y ⊆ B. We say that f is Y -independent
if for all g1, g2 ∈ AB such that g1(x) = g2(x) whenever x /∈ Y , f(g1) = f(g2).

Theorem 1 (Compositionality of S-semantics). LetM be a suitable model,
let S ⊆ |M|ω be nonempty and let p : Vars→ ω and h < ω be a proper context.
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1. M |=+ R(t1, . . . , tk)[S, p, h] iff M |= R(t1, . . . , tk)[s ◦ p] for all s ∈ S
2. M |=− R(t1, . . . , tk)[S, p, h] iff M �|= R(t1, . . . , tk)[s ◦ p] for all s ∈ S
3. M |=+ ∼ψ[S, p, h] iff M |=− ψ[S, p, h]
4. M |=− ∼ψ[S, p, h] iff M |=+ ψ[S, p, h]
5. M |=+ ψ1 ∨/y1,...,yk

ψ2[S, p, h] iff there is an f : S → {L,R} such that
– f is {p(y1), . . . , p(yk)} ∪ {k | k ≥ h}-independent;
– M |=+ ψ1[SL, p, h], where SL = {s | s ∈ S, f(s) = L}; and
– M |=+ ψ2[SR, p, h], where SR = {s | s ∈ S, f(s) = R}

6. M |=− ψ1 ∨/y1,...,yk
ψ2[S, p, h] iff M |=− ψ1[S, p, h] and M |=− ψ1[S, p, h]

7. M |=+ ∃x/y1,...,yk
ψ[S, p, h] iff there is a function f : S → |M| such that

– f is {p(y1), . . . , p(yk)} ∪ {k | k ≥ h}-independent; and
– M |=+ ψ[S̃, p[x �→ h], h+ 1], where S̃ = {s[h �→ f(s)] | s ∈ S}

8. M |=− ∃x/y1,...,yk
ψ[S, p, h] iff M |=− ψ[S̃, p[x �→ h], h+ 1] for S̃ = {s[h �→

a] | s ∈ S, a ∈ |M|}
Definition 4 (≡h and ≡). Given h < ω, we write ϕ1 ≡h ϕ2 if Fv(ϕ1) =
Fv(ϕ2) and for every suitable model M, every nonempty S ⊆ |M|ω and every
p : Vars → ω such that p, h is a proper context for ϕ1, M |=± ϕ1[S, p, h] iff
M |=± ϕ2[S, p, h]. Furthermore, if for every h < ω we have ϕ1 ≡h ϕ2 , then we
say that the formulas are S-equivalent, notated ϕ1 ≡ ϕ2.

Since strategies for the game G(M, ϕ, S, p, h) must deal with sequences but not
with variable values, it is straightforward to verify the following:

Proposition 2. If ϕ1 ≡α ϕ2 then ϕ1 ≡ ϕ2.

In first-order logic, the truth of a formula depends only on the value of its free
variables (i.e., if M |= ϕ[v] and v and v′ differ only on variables that are not
free in ϕ, then M |= ϕ[v′]). We will show next that in our setting, there are
three operations on valuations that preserve satisfaction. In what follows, for
S ⊆ Aω , we define S � n = {(s(0), . . . , s(n− 1)) | s ∈ S}; we call h-permutation
to any bijective function π : ω → ω such that π(i) = i for all i ≥ h; and
S ◦ π = {s ◦ π | s ∈ S}.
Theorem 2. For all suitable M, nonempty S ⊆ |M|ω and proper contexts for
ϕ, p and h:

1. If p̃ � Fv(ϕ) = p � Fv(ϕ), then M |=± ϕ[S, p, h] iff M |=± ϕ[S, p̃, h].
2. If S̃ is such that S̃ � h = S � h, then M |=± ϕ[S, p, h] iff M |=± ϕ[S̃, p, h].
3. If π is an h-permutation then M |=± ϕ[S, p, h] iff M |=± ϕ[S ◦ π, π ◦ p, h].

We are now ready to show that, when restricted to regular formulas, the equiv-
alence notions of S-semantics and T-semantics match. Of course, this implies
that the set of valid (regular) formulas of both logics is the same and, because of
Proposition 2, S-semantics is a proper generalization of T-semantics (the proof
is on Section A.4).

Theorem 3. Let ϕ1 and ϕ2 be regular formulas. Then ϕ1(x0, . . . , xh−1) ≡T
ϕ2(x0, . . . , xh−1) iff ϕ1 ≡h ϕ2.
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4 Game Theoretical Semantics for IF with Flattening

We say that ϕ is true inM whenM |=+ ϕ and that is false ifM |=− ϕ. Clearly,
if M |=+ ϕ then M �|=− ϕ, and if M |=− ϕ then M �|=+ ϕ. However there are
sentences which may be neither true nor false in a model. Hodges considers
the problem of adding classical negation to slash logic. He wants, for instance,
M |=± ¬ϕ iff M �|=± ϕ to hold; restoring, for sentences, the identity between
being not-true and being false. To this end, he introduces the flattening operator
↓, and stipulates ¬ψ ≡ ∼↓ψ [11].

Since in this section we move to slash logic enriched with the flattening op-
erator, we assume from here on that ↓ may occur freely in a formula. First of
all, we need to specify its semantics. Hodges used a compositional definition;
therefore, we will take Theorem 1 to be a compositional definition of |=+ and
|=− for slash logic and extend it to handle ↓. Observe we are simply adapting
his notation according to our presentation.

Definition 5 (|=+ and |=− for S-semantics with ↓). We define |=+ and |=−
as the relation induced by clauses 1–8 of Theorem 1, plus

9. M |=+ ↓ψ[S, p, h] iff M |=+ ψ[s, p, h] for every s ∈ S
10. M |=− ↓ψ[S, p, h] iff M �|=+ ψ[s, p, h] for every s ∈ S
Hodges seems to suggest that no natural game-theoretical semantics can be given
for this logic3. In any case, this can indeed be done. We define next the game
G↓(M, ϕ, S, p, h), which extends the rules of the game described in Section 3 to
deal with formulas containing arbitrary occurrences of ↓.
The board. The board is essentially the same one used for G(M, ϕ, S, p, h). The
syntactic tree of the formula now may contain ↓-nodes; these are assigned to
players using the same criteria: those under an even number of ∼-nodes belong
to Elöıse, the remaining ones to Abélard. Just like the leafs of the tree, ↓-nodes
will not be decorated.
The turns. Unlike the one of Section 3, this game may last more than one turn.
At any point of the game, the remaining number of turns will be bounded by
the number of nested occurrences of ↓-nodes in the game-board. The opening
turn is played exactly like in Section 3, although we still need to stipulate what
happens, during the evaluation phase, if Nature arrives to a formula of the form
↓ψ. Observe that this means that if no ↓ occurs in ϕ, then G(M, ϕ, S, p, h) and
G↓(M, ϕ, S, p, h) are essentially the same game.

So, summing up, when the game starts, both players decorate their nodes
simultaneously; then Nature picks a sequence and puts it in the placeholder, and
finally starts the evaluation phase (cf. rules R1–R4 in Section 3). If evaluation
reaches a leaf (i.e., an atom), then the game ends, and the winner is determined
according to rule R4. For the extra case we add the following rule:

R5. If the tree is of the form ↓ψ, then the turn ends.
3 The exact quote is: “In the presence of ↓, we can’t define a game G(φ, A) for arbitrary

A and φ.” [11, p. 556].
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The initial turn differs slightly from the subsequent ones, where the formula on
the board will be always of the form ↓ψ. Now both players get to redecorate their
nodes, except that in this case, they proceed one after the other. The player who
owns the ↓-node at the root gets to do it first. After this, Nature replaces the
tree with ψ and proceeds to the evaluation phase following rules R1–R5.

We won’t go into a formal description of a winning strategy for this game. We
simply take it to be some form of oracle that, when followed, guarantees that
the game ends in a winning position.

Theorem 4 (Game semantics for ↓). Given a formula ϕ, a suitable M, a
nonempty S ⊆ |M|ω and a proper context for ϕ, 〈p, h〉, the following holds:
M |=+ ϕ[S, p, h] iff Elöıse has a winning strategy for G↓(M, ϕ, S, p, h); M |=−
ϕ[S, p, h] iff Abélard has a winning strategy for G↓(M, ϕ, S, p, h).

5 Conclusions

We think that invariance under α-equivalence is a property that no sane for-
malism can disregard. By decoupling values from name for values we have been
able to successfully generalize Hodges’ T-semantics from regular formulas to
unrestricted ones. To achieve this we had to pay a small price: abandon the
well-established use of classical valuations.

In [3], Caicedo, Dechesne and Janssen took a different path and investigated
a weaker notion of equivalence for V-semantics. They say, for instance, that
ϕ ≡xz ψ if {x, y} �⊆ Fv(ϕ) ∪ Fv(ψ) and M |=± ϕ[V ] iff M |=± ψ[V ], provided
that x and z are excluded from the domain of the valuations in V and go into
great technical efforts to properly characterize the normal form equivalences
initially presented in [4]. We believe this route leads ultimately to a dead-end:
V-semantics are buying very little and are too hard to reason about.

We favor a simpler approach, akin to the usual practice in classical logics.
For convenience, stick to regular formulas, use a lightweight formalism, like T-
semantics, and finally resort to Theorem 3 and Propositions 1 and 2 to generalize
the result. This way, for instance, the normal forms results of [4] can easily be
shown to hold under S-semantics, in a much more general way than in [3].

In the last part of the paper we looked at the ↓-operator from a novel game-
theoretical perspective. We believe this will ultimately help to gain more insight
about this operator.
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A Technical Appendix

A.1 Compositionality for T-Semantics

For completeness, we introduce the compositional formulation of T-semantics.
Our presentation is closer to the one due to Caicedo and Krynicki [4], but they
can easily be shown to be equivalent.
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In the following definition, if t = (t1, . . . , tn) ∈ |M|n, then vt : Vars → |M|
stands for any classical first order valuation such that v(xi) = ti for i = 1, . . . , n.
For a definition of Y -independence, refer to Definition 3 on page 170.

Definition 6 (Compositionality of T-semantics). Let x = x1, . . . , xn, let
ψ(x) be a regular formula, let M be a suitable model and let T ⊆ |M|n be a set
of deals of length n. We define |=+ and |=− as follows:

1. if ϕ(x) is atomic or negated atomic,

– M |=+ ϕ(x)[T ] iff M |= ϕ(x)[vt] for all t ∈ T
– M |=− ϕ(x)[T ] iff M �|= ϕ(x)[vt] for no t ∈ T

2. if ϕ(x) = ∼ψ(x),

– M |=+ ϕ(x)[T ] iff M |=− ψ(x)[T ]
– M |=− ϕ(x)[T ] iff M |=+ ψ(x)[T ]

3. if ϕ(x) = ψ1(x) ∨/xn1 ,...,xnk
ψ2(x) for some {n1, . . . , nk} ⊆ {1, . . . , n},

– M |=+ ϕ(x)[T ] iff there is a function g : T → {L,R} such that
• g is {n1, . . . , nk}-independent;
• M |=+ ψ1(x)[TL], where TL = {t | t ∈ T, g(t) = L}; and
• M |=+ ψ2(x)[TR], where TR = {t | t ∈ T, g(t) = R}

– M |=− ϕ(x)[T ] iff M |=− ψ1(x)[T ] and M |=− ψ1(x)[T ]

4. if ϕ(x) = ∃y/xn1 ,...,xnk
ψ(x, y) and y /∈ {x1, . . . , xn} for some {n1, . . . , nk} ⊆

{1, . . . , n},
– M |=+ ϕ(x)[T ] iff there is a function g : T → |M| such that
• g is {n1, . . . , nk}-independent; and
• M |=+ ψ(x, y)[T ′], where

T ′ = {(t1, . . . , tn, g(t1, . . . , tn)) | (t1, . . . , tn) ∈ T }

– M |=− ϕ(x)[T ] iff M |=− ψ(x, y)[T ′] for

T ′ = {(t1, . . . , tn, a) | (t1, . . . , tn) ∈ T, a ∈ |M|}

A.2 Proof of Proposition 1

Let x = x1, . . . , xn. It is enough to consider the case where ϕ1(x) is equal to
ϕ2(x) except that the bound variable u of ϕ1(x) is replaced by v in ϕ2(x),
within the scope of the same quantifier. By the Full Abstraction Theorem for
T-semantics [11, Theorem 7.6] it suffices to prove that ∃u/xn1 ,...,xnk

ψ1(x, u) ≡T
∃v/xn1 ,...,xnk

ψ2(x, v), where ψ2(x, v) is obtained from ψ1(x, v) when replacing
the free variable u with v. One can prove by induction that ψ1(x, v) ≡T ψ2(x, u).
The key point here is that at item 1 of Definition 6 the name u or v is irrelevant,
as long as they came in the same order in the lists (x, u) and (x, v).
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A.3 Proof of Theorem 1

For the right-to-left implication, one proceeds by structural induction and shows
that, for the ∃ and ∨ cases, the function f plus the strategy for the subformula(s)
constitute a winning strategy. For the left-to-right implication, one only needs to
see that if a player has a winning strategy on the game G(M, ϕ, S, p, h), then he
also has a winning strategy where all the functions that constitute it satisfy the
independence restriction, and this is relatively straightforward (the full details
can be seen, e.g., in [3, Theorems 4.7 and 4.8]). In every case, one also has to
check that contexts are proper, but this is trivial.

A.4 Proof of Theorem 3

We first need to establish the following lemma.

Lemma 1. Let ϕ(x0, . . . , xh−1) be a regular formula such that in every branch
of its syntactic tree, variables are bound in the same order. Furthermore, let
p : Vars → ω be such that p(xi) = i for 0 ≤ i < h. Then M |=± ϕ[S, p, h] iff
M |=± ϕ(x0 . . . xh−1)[S � h].

Proof. Let x = x0, . . . , xh−1. Suppose the list of occurrences of bound variables
appearing in each branch of the syntactic tree of ϕ(x) (from the root to the
leaves) is a prefix of xh, xh+1, xh+2, . . . The proof goes by induction in the com-
plexity of ϕ. The atomic and negation are straightforward. Let us analyze the
case ϕ = ∃xh/xn1 ,...,xnk

ψ(x, xh), for some {n1, . . . , nk} ⊆ {0, . . . , h− 1}.
For the left to right implication, suppose M |=+ ϕ(x)[S, p, h]. By Theorem 1

(item 7), there is a function f : S → |M| such that f is {p(xn1), . . . , p(xnk
)} ∪

{k | k ≥ h}-independent and M |=+ ψ(x, xh)[S′, p[xh �→ h], h + 1], where
S′ = {s[h �→ f(s)] | s ∈ S}. Since p = p[xh �→ h], by inductive hypothesis we
get M |=+ ψ(x, xh)[S′ � h + 1]. Fix z ∈ S and define g : S � h → |M| as
g(s0, . . . , sh−1) = f(s0 . . . sh−1z(h)z(h+ 1) . . . ) for every (s0, . . . , sh−1) ∈ S � h.
Since f is {n1, . . . , nk} ∪ {k | k ≥ h}-independent then g is clearly well-defined
and {n1, . . . , nk}-independent. Furthermore,

S′ � h+ 1 = {(s0, . . . , sh−1, g(s)) | (s0, . . . , sh−1) ∈ S � h}.

By Definition 6 (item 4), M |=+ ϕ(x)[S � h].
For the other direction, supposeM |=+ ϕ(x)[S � h]. By Definition 6 (item 4),

there exists some function g : S � h→ |M| that is {n1, . . . , nk}-independent and
such that M |=+ ψ(x, xh)[T ′], where

T ′ = {(t1, . . . , th, g(t1, . . . , th)) | (t1, . . . , th) ∈ S � h}.

Observe that T ′ = S′ � h+ 1, where

S′ = {s[h �→ g(s(0), . . . , s(h− 1))] | s ∈ S}.
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By inductive hypothesis and the fact that p[xh �→ h] = p, we have M |=+

ψ(x, xh)[S′, p[xh �→ h], h+ 1]. Define f : S → |M| as f(s) = g(s(0), . . . , s(h−1))
for s ∈ S. By definition, f is clearly {k | k ≥ h}-independent, and since g is
{n1, . . . , nk}-independent, f also is. By Theorem 1 (item 7) we concludeM |=+

ϕ(x)[S, p, h].
The case for |=− and ϕ = ∃xh/xn1 ,...,xnk

ψ(x, xn) is straightforward. A similar
argument can be used for the case ϕ(x) = ψ1(x) ∨/xn1 ,...,xnk

ψ1(x).

We are now ready to prove the theorem. We will only show it for |=+, the
argument for |=− is similar. In what follows x will stand for x0, . . . , xh−1. From
left to right, by the counterpositive, suppose that M |=+ ϕ1(x)[S, p, h] and
M �|=+ ϕ2(x)[S, p, h], for some suitable model M and some p : Vars → ω such
that p, h is a proper context for ϕ1 (and for ϕ2, since Fv(ϕ1) = Fv(ϕ2)). One
can build an h-permutation π such that π(p(xi)) = i for 0 ≤ i < h and using
Theorem 2 one getsM |=+ ϕ1(x)[S ◦π, π ◦p, h] butM �|=+ ϕ2(x)[S ◦π, π ◦p, h].
By Proposition 2, we can pick regular ϕ′1 ≡α ϕ1 and ϕ′2 ≡α ϕ2 where variables
are bound in the same order on every branch of their syntactic trees and, using
Lemma 1 we obtain M |=+ ϕ′1(x)[S ◦ π � h] and M �|=+ ϕ′2(x)[S ◦ π � h], which
implies ϕ1(x) �≡T ϕ2(x) using Proposition 1.

From right to left, suppose ϕ1(x) �≡T ϕ2(x), i.e.,M |=+ ϕ1(x)[T ] andM �|=+

ϕ2(x)[T ], for some suitable model M and some trump T ⊆ |M|h. Define

S = {t1 · · · ths | (t1, . . . , th) ∈ T, s ∈ |M|ω}
and p(xi) = i. Again, using invariance under α-equivalence and Lemma 1 we
conclude M |=+ ϕ1[S, p, n] and M �|=+ ϕ2[S, p, n].

A.5 Proof of Theorem 4

The proof goes by induction on ϕ and is, essentially equivalent to the one for The-
orem 1 except that we also have to account for the case where ϕ is ↓ψ. Suppose
firstM |=+ ↓ψ[S, p, h]; this means thatM |=+ ψ[s, p, h] for all s ∈ S. We want to
construct a winning strategy for Elöıse for the game G↓(M, ↓ψ, S, p, h). The first
turn is irrelevant; for the second one, Elöıse simply has to consider the valuation
s in the placeholder and use the winning strategy for G↓(M, ψ, {s}, p, h) that,
by inductive hypothesis, she has. For the other direction, suppose Elöıse has a
winning strategy for G↓(M, ↓ψ, S, p, h). This implies she has a winning strategy
for G↓(M, ψ, {s}, p, h) for all s ∈ S: play whatever she would play as her second
turn in G↓(M, ↓ψ, S, p, h) if Nature happened to pick s. By inductive hypothesis,
this means M |=+ ψ[s, p, h] for all s ∈ S and, thus, M |=+ ↓ψ[S, p, h].

Suppose now M |=− ↓ψ[S, p, h]; then for every s ∈ S, M �|=+ ψ[s, p, h]. From
here we derive a winning strategy for Abélard on G↓(M, ↓ψ, S, p, h) as follows.
The first turn is irrelevant; for the second one, an s ∈ S has been picked and
Elöıse has played first following some strategy. Observe that this strategy is also
a possible strategy for G↓(M, ψ, {s}, p, h). But by inductive hypothesis, since
M �|=+ ψ[s, p, h], it cannot be a winning strategy for this game, i.e. Abélard
has some strategy that defeats hers. Abélard simply has to use this strategy
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from this point on and will win the game. Analogously, if Abélard has a winning
strategy for G↓(M, ↓ψ, S, p, h), then for every s ∈ S picked by Nature and any
strategy followed by Elöıse, there is a way in which Abélard can play and win
the game. But this means that for no s ∈ S, Elöıse has a winning strategy
for G↓(M, ψ, {s}, p, h) and, thus, by inductive hypothesis,M �|=+ ψ[s, p, h] and,
finally, M |=− ↓ψ[S, p, h].
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Abstract. The Curry-Howard correspondence connects Natural Deduc-
tion derivation with the lambda-calculus. Predicates are types, deriva-
tions are terms. This supports reasoning from assumptions to
conclusions, but we may want to reason ‘backwards’ from the desired
conclusion towards the assumptions. At intermediate stages we may have
an ‘incomplete derivation’, with ‘holes’.

This is natural in informal practice; the challenge is to formalise it.
To this end we use a one-and-a-halfth order technique based on nominal
terms, with two levels of variable. Predicates are types, derivations are
terms — and the two levels of variable are respectively the assumptions
and the ‘holes’ of an incomplete derivation.

1 Introduction

The Curry-Howard correspondence [US06, PCW05] connects logic with typed λ-
calculus: predicates are types; derivations are terms; discharge is λ-abstraction;
modus ponens is application; β-reduction is proof-normalisation. For example,1

[A]a A⇒B

B

[A]a A⇒B⇒C

B⇒C

C
a

A⇒C

corresponds with λa.((pa)qa) (1)

where a has type A, p has type A ⇒ B ⇒ C, and q has type A ⇒ B.
The λ-calculus supports ‘forwards’ reasoning, where we plug together com-

plete derivations to form larger ones. However, we may wish to reason ‘back-
wards’: We start from an incomplete derivation of the desired conclusion and we
work backwards to construct a derivation. Then we may have ‘half a derivation’,
like as below left with a ‘hole’ called X:

··· X

B

[A]a A⇒B⇒C

B⇒C

C
a

A⇒C

[A]a
··· X

A ⇒ B

B

[A]a A⇒B⇒C

B⇒C

C
a

A⇒C

[A]a··· X

A ⇒ B

B

[A]a A⇒B⇒C

B⇒C

C
a

A⇒C

1 We are grateful to Jojgov for the examples in his paper [Joj02]. We thank Iman
Poernomo and two anonymous referees for helpful comments.
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Here, λ-calculus syntax is less helpful. X corresponds with qa in the complete
derivation, so (being straighforward about it) the incomplete derivation corre-
sponds with ‘λa.((pa)X)’. But X is under a λ-binder and should be instanti-
ated ; substituted for without avoiding capture. This is impossible within the
λ-calculus. Most interesting logics are undecidable so theorem-proving is often
interactive (like AUTOMATH [dB80] and its many descendents). This leads us
to study calculi tailored to represent incomplete derivations.

In this paper we build on previous work by the first author and others on
nominal techniques [GP01] and specifically nominal terms [UPG04] and one-
and-a-halfth order logic [GM07]. These were designed specifically to study bind-
ing (in unification up to α-equivalence, and derivation-schema in first-order logic
respectively). They feature two levels of variables, freshness conditions, and per-
mutations; details are in this paper, and in the work cited above. In this paper
we extend this pallette of ideas to represent binding in incomplete derivations.
We are reasonably ambitious in our choice of logic for which to represent in-
complete derivations: we will consider first-order predicate logic; this is a signifi-
cantly more complex target than propositional logic, and it leads to quite a rich
syntax.

In the style of Miller [Mil92], McBride’s OLEG system [McB99], and a col-
lection of λ-calculi by Bognar [Bog02], we can represent X by fa where f is
a ‘normal’ variable, perhaps recording in a context f should be instantiated;
f � λa.((pa)fa). A problem from our point of view is, for example, that the
representation of the incomplete derivation above left is identical to that of
distinct incomplete derivations above centre and above right, in which X is
refined.

Another approach is to extend the λ-calculus with hereditarily parameterised
meta-variables (hereditarily, since the parameters may themselves have ‘holes’).
This path is taken by Jojgov [Joj02], and for a non-hereditary notion of param-
eters, by Severi and Poll [SP94], and Bloo et al [BKLN02].

Following one-and-a-halfth order logic [GM07] we propose an approach based
on nominal terms [UPG04]. Nominal terms have atoms a, b, c, . . . and unknowns
X,Y, Z, . . .. Crucially, substitution of unknowns does not avoid capture by atoms,
and we reason on what unknowns do not depend on, rather than using parame-
ters to record what they might depend on (a#X versus fa; see ‘freshness’ below).
The first author, Urban, Pitts, and Cheney amongst others have argued in favour
this approach [UPG04, FG07, Mat07, Pit02, Che05].2

We further this argument and show that atoms, unknowns and freshness
model assumptions, holes, and discharge in incomplete derivations.

Consider an example; definitions are in the body of the paper:

2 In one-and-a-halfth order logic, unknowns populate predicates, and model predicate
meta-variables in derivation schemas. Here, unknowns are used differently, to model
holes in terms representing derivations. The common ‘one-and-a-halfth order’ idea
— also present, implicitly, in Curry-style types for nominal terms [FG06] — is that
atoms can be variables. This is different from [UPG04] where atoms populate a sort
of atoms and are variable symbols.
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(1)
··· X

⊥⇒A
(2)

[⊥]a··· X

⊥⇒A

(3)

[⊥]a··· X ′

A
(⇒I)a

⊥⇒A

(4)

[⊥]a
(⊥E)

A
(⇒I)a

⊥⇒A

(1) X :⊥⇒φ � X :⊥⇒φ

(2) X :⊥⇒φ, a:⊥; a#X � X :⊥⇒φ

(3) a:⊥, X ′:φ � λa.X ′:⊥⇒φ

(4) a:⊥ � λa.xf(a):⊥⇒φ

On the left is a refinement of an incomplete derivation of ⊥ ⇒ A to a complete
derivation represented by λa.xf(a). Here xf (for ex-falsum) is a constant repre-
senting ⊥-elimination. On the right is their representation as terms-in-context
in one-and-a-halfth order Curry-Howard. Note that:

− Assumptions are represented by atoms. Types are predicates assumed.
− Incomplete parts of the derivation, or (using terminology from the theorem-
proving community) subgoals, are represented by unknowns. Types are predi-
cates to be proved.
− Freshness conditions a#X, read in the literature as ‘a is fresh for X’ [UPG04]
mean here that ‘a must be discharged in whatever X is instantiated to’.

This paper is ‘just’ about a type system for nominal terms. Has this not
been done before? Not in a way that helps us for constructing Curry-Howard
for first-order logic. A sorting system for nominal terms from [UPG04] is not
suitable; it is designed to construct abstract syntax and atoms have sort ‘the
sort of atoms’. A typing system [FG06] is not suitable; types corresponded to
propositional logic with quantifiers whereas here, we want first-order logic and;
we also want to represent (∀I) and (∀E) (Figure 2) so terms may λ-abstract over
and be applied to type variables and we require freshness for type variables.

Some words on what this paper is not: it is not proof-search [PR05, MS06].
We study binding in incomplete derivations, but not the act of stepping from
one derivation to another. We also give no semantics to our syntax: There is
no denotational semantics (Scott domains spring to mind; we would require an
extended version, perhaps like FM (nominal) domain theory [SP05]). There is
not even an operational semantics (reduction of derivations), though we do plan
this for a later paper; see the Conclusions.

2 Terms, Types, and Natural Deduction

2.1 Terms and Types

We give definitions, then discuss examples in Remark 10 and Subsection 2.2.
Fix disjoint countably infinite sets of atoms A and unknowns. We let

a, b, c, d, . . . range over atoms. We use a permutative convention; they range
permutatively over atoms, so for example ‘a and b’ means ‘a pair of two distinct
atoms’. Similarly we let X,Y, Z, . . . range permutatively over unknowns.3

3 When we write ‘x’ and ‘y’ we intend them to be distinct symbols; for example ‘λx.y’
is always taken to be different from ‘λx.x’; likewise ‘x = y’ is different syntax than
‘x = x’. This is distinct from the denotation of x being equal to that of y.
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Fix atomic type-formers P,Q,R, to each of which is associated an arity
ar(-) which is a nonnegative integer (0, 1, 2, . . . ).

Definition 1. Let types be: φ, ψ, ξ ::= ⊥ | φ⇒ φ | P(
ar(P) var’bles
︷ ︸︸ ︷
a, . . . ) | ∀a.φ.

For example ∀a.(P(a, a) ⇒ P(a, b)) is a valid type if ar(P) = 2.
We equate types up to ∀-bound atoms. We write ≡ for syntactic identity of

types. We write φ[a := b] for the usual capture-avoiding substitution action of b
for a. Implication associates to the right; for example φ⇒ ψ ⇒ ξ ≡ φ⇒ (ψ ⇒ ξ).

Intuitively, types are first-order logic with the trivial term-language (a logic
whose terms are just variable symbols).

Definition 2. Define the free atoms of φ as standard by:

fa(P(a, . . .))={a, . . .} fa(φ⇒ψ)=fa(φ)∪fa(ψ) fa(⊥)=∅ fa(∀a.φ)= fa(φ)\{a}
Definition 3. Let terms be: r, s, t, . . . ::= a | X | λa.r | r′r | xf(r).
Following [GL08] we identify terms up to α-equivalence of a in λa.r provided
that r mentions no unknowns.4 We write ≡ for syntactic equivalence of terms.

For example λa.a ≡ λb.b and λa.X 	≡ λb.X. We may write (λa.r)t as r[a 
→ t], for
example (λa.b)a ≡ b[a 
→ a]. We may write r′r as r′(r). Application associates to
the left, so r′′r′r ≡ (r′′r′)r; sometimes we will bracket anyway.

Definition 4. A type assignment is a pair of the form a : φ, or X : φ, or a : ∗.
A typing context Γ is a finite set of type assignments, which is functional in
the sense that:

− If a : φ ∈ Γ then a : ∗ 	∈ Γ . If a : ∗ ∈ Γ then a : φ 	∈ Γ .
− If a : φ ∈ Γ and a : φ′ ∈ Γ then φ = φ′. Similarly for X.

As is standard we may drop set brackets, writing for example Γ, a :φ for Γ ∪{a :φ}.
We use this convention later without comment. Intuitively, a : φ means ‘a has
type φ’; a : ∗ means ‘a is a type variable’; X : φ means ‘X has type φ’.

Remark 5. We use the same syntactic class (atoms) to represent type variables
and term variables. The typing context differentiates them; a : φ ∈ Γ means a
behaves like a term variable; a : ∗ ∈ Γ means a behaves like a type variable.

We could make a syntactic separation between atoms that can have types
(a : φ ∈ Γ ), and atoms that can appear in types (a : ∗ ∈ Γ ). However, we would
duplicate the treatments of λ-abstraction, application, and freshness. Our ap-
proach keeps the machinery significantly shorter.

Definition 6. Call a pair a#r of an atom and a term a freshness. Call a
freshness of the form a#X primitive. Call a finite set of primitive freshnesses
a freshness context. Δ will range over freshness contexts.
4 This allows us to rename bound atoms in ‘normal’ syntax — the part without un-

knowns — but it stops short of a nominal terms style α-equivalence with unknowns
based on permutations. For our purposes in this paper, what we give ourselves is
enough. See the Conclusions.
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Definition 7. Call Γ ;Δ � r a term-in-context. Call Γ ;Δ � r : φ a typing se-
quent. Call Γ ;Δ � a#r a freshness sequent.

We may write ‘Γ ;Δ � r : φ’ for ‘Γ ;Δ � r : φ is a derivable typing sequent’, and
similarly for Γ ;Δ � a#r.

Definition 8. − If Φ is a set of types, write fa(Φ) for
⋃{fa(φ) | φ ∈ Φ}.

− If X is a set of unknowns, write a#X for the freshness context {a#X | X ∈ X}.
− Write b 	∈ Δ when b#X 	∈ Δ for all X.

Definition 9. Let the derivable typing and freshness sequents be inductively
defined by the rules in Figure 1. We use the following notation here and later:

− Side-conditions are written in brackets.
−A ranges over typings or freshnesses, so A ∈ {r : φ, a : ∗, a#r}.
− If a sequent - � - is not derivable we write - 	� -.
− We write important(Γ ;Δ � r) for {φ | a : φ ∈ Γ, Γ ;Δ 	� a#r}.

If φ exists such that Γ ;Δ � r : φ is derivable, call Γ ;Δ � r typable.

Remark 10. We compare the rules in Figures 1 and 2:

− Compare (T⊥E) with (⊥E). ‘xf’ stands for ex falsum. (T⊥E) corresponds
with (⊥E) in a standard way. No surprises here.
− Compare (T⇒I) with (⇒I). (T⇒I) does not discharge a : φ because r may
contain an unknown X. We intend X to be instantiated to t which (because
instantiation need not avoid capture) may mention a; see Definition 16. We
remember a : φ in the typing context so that we can use it to build t, if we like.
We can mimic (⇒I) using (T⇒I) and (Tfr).
− (Tfr) is an explicit discharge rule. It connects b#r, which we can read as
‘b will discharged in the (possibly incomplete) derivation represented by r’
with actual discharge of b; after discharge, we cannot use b to construct any
further derivations. As we just argued above, in the presence of unknowns it is
convenient to separate these two notions.
− Compare (T∀I) with (∀I). a 	∈ fa(Φ) is intuitively ‘a is not free in any of
the assumptions Φ used to prove φ’. a 	∈ fa(important(Γ, a:∗;Δ � r)) generalises
this to take account of unknowns and freshness assumptions on them.
− Compare (a#b), (a#b′), and (a#b′′). (a#b) and (a#b′′) are as in [UPG04];
distinct atoms are fresh. In (a#b′) we account for the type of b. For example:

a : P(c), X : P(c), c : ∗; a#X � a#X

a:P(c), X :P(c), c:∗; a#X 	� c#X a:P(c), X :P(c), c:∗; a#X 	� c#a

2.2 Examples

The derivations below type terms representing derivations from the Introduc-
tion; one is complete, the other incomplete. At each stage the term being typed
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represents a (possibly incomplete) Natural Deduction derivation. Write ‘Γ ; ∅ � r’
as ‘Γ � r’. Write Γ for a : A, p : A ⇒ B ⇒ C, q : A ⇒ B:

(Tax)
Γ � a : A

(Tax)
Γ � q : A ⇒ B

(Ty⇒E)
Γ � qa : B

(Tax)
Γ � a : A

(Tax)
Γ � p : A ⇒ B ⇒ C

(T⇒E)
Γ � pa : B ⇒ C

(Ty⇒E)
Γ � (pa)qa : C

(T⇒I)
Γ � λa.((pa)qa) : A ⇒ C

(Tfr)
p : A ⇒ B ⇒ C, q : A ⇒ B � λa.((pa)qa) : A ⇒ C

(Tax)
Γ, X : B � X : B

(Tax)
Γ, X : B � a : A

(Tax)
Γ, X : B � p : A ⇒ B ⇒ C

(T⇒E)
Γ, X : B � pa : B ⇒ C

(Ty⇒E)
Γ, X : B � (pa)X : C

(T⇒I)
Γ, X : B � λa.((pa)X) : A ⇒ C

(Tfr)
p : A ⇒ B ⇒ C, q : A ⇒ B, X : B � λa.((pa)X) : A ⇒ C

Derivations of Γ � a#λa.((pa)qa) and Γ, X : B � a#λa.((pa)X) are elided.5

Another example illustrates the side-condition on (T∀I). The two derivations

A

∀c.(A ⇒ P(c))
(∀E)

A ⇒ P(c)
(⇒E)

P(c)
(∀I)∀c.P(c) (∀c.P(c)) ⇒ B

(⇒E)
B

··· X

∀c.P(c) (∀c.P(c)) ⇒ B
(⇒E)

B

(2)

are represented, writing Γ for a : A, p : ∀c.(A ⇒ P(c)), q : (∀c.P(c)) ⇒ B, c : ∗, by:

(Tax)
Γ � a:A

(Tax)
Γ � p : ∀c.(A⇒P(c))

(T∀E)
Γ � pc : A⇒P(c)

(T⇒E)
Γ � pca : P(c)

(
c 	∈fa(A),

c 	∈fa(∀c.(A⇒P(c))
)

(T∀I)
Γ � λc.(pca) : ∀c.P(c)

(Tax)
Γ � q : (∀c.P(c))⇒B

(T⇒E)
Γ � q(λc.(pca)) : B

(Tfr)
a : A, p : ∀c.(A ⇒ P(c)), q : (∀c.P(c)) ⇒ B � q(λc.(pca)) : B

(Tax)
Γ, X : P(c) � X : P(c)

(
c 	∈ fa(A)
c 	∈ fa(∀c.(A⇒P(c)))

c 	∈ fa((∀c.P(c))⇒B))
)

(T∀I)
Γ, X : P(c) � λc.X : ∀c.P(c)

(Tax)
Γ, X : P(c) � q : (∀c.P(c))⇒B

(T⇒E)
Γ, X : P(c) � q(λc.X) : B

(Tfr)
a : A, p : ∀c.(A ⇒ P(c)), q : (∀c.P(c)) ⇒ B, X : P(c) � q(λc.X) : B

5 The (Tfr) in the second derivation is ill-advised, in the sense that intuitively we can-
not then instantiate X to qa; we might prefer to conclude the derivation with (T⇒I).
We leave this kind of choice to a derivation search algorithm, or we might favour a
‘safe’ variant of (Tfr) which insists r be closed (that r mention no unknowns).
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Derivations of freshnesses are elided.

2.3 Natural Deduction

We outline Natural Deduction and prove forms of soundness and completeness.

Definition 11. Call a finite set of types a (Natural Deduction) context. Let
Φ,Φ′ range over contexts.

Write Φ � φ when φ may be derived using the rules in Figure 2 allowing ele-
ments of Φ as assumptions.6 In accordance with our convention, side-conditions
are in brackets. As is standard, square brackets in (⇒I) denote discharge of as-
sumptions; note that we may choose to discharge φ zero times (empty discharge).

Lemma 12. If Φ � ψ and Φ ⊆ Φ′ then Φ′ � ψ.

Definition 13. Call Γ ;Δ � r closed when Δ = ∅ and Γ mentions no unknowns.
Recall that we write ‘Γ ; ∅ � r’ as ‘Γ � r’.

Theorem 14. Suppose Γ � r is closed and suppose Γ � r : φ is derivable. Then
important(Γ � r) � φ (Definition 9) is derivable in Natural Deduction. (Proof in
the Appendix.)

Theorem 15. If Φ � φ is derivable in Natural Deduction then there exists some
closed Γ � r such that important(Γ � r) ⊆ Φ and Γ � r : φ. (Proof in the
Appendix.)

2.4 Admissible Rules

Definition 16. Define a substitution action r[X := t] by:

a[X := t] ≡ a X [X := t] ≡ t Y [X := t] ≡ Y xf(r)[X := t] ≡ xf(r[X := t])
(λa.r)[X := t] ≡ λa.(r[X := t]) (r′r)[X := t] ≡ (r′[X := t])(r[X := t])

Write unkn(Γ ) for the unknowns mentioned in Γ . Figure 3 presents two kinds of
weakening and a form of Cut.

Theorem 17. (WeakX) is admissible (if the sequents above the line are deriv-
able, so are those below).

Proof. By a routine induction on derivations.

(Weaka) states that the atom is fresh for the incomplete parts in the derivation:

Theorem 18. (Weaka) is an admissible rule. (Proof in the Appendix.)

Lemma 19 states how instantiating unknowns is sound:
6 Note that in Natural Deduction, Φ, φ � φ is automatic — ‘if we allow Φ, φ as as-

sumptions, then we assume φ, and so we have φ’. There is no need for a derivation
rule.
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Lemma 19. Suppose that:

− Γ,X : ψ;Δ � r : φ and Γ ;Δ � t : ψ.
− Γ ;Δ′ � a#t for every a#X ∈ Δ.

Then:

− Γ ;Δ′ � r[X := t] : φ.
− Γ,X : ψ;Δ � a#r implies Γ ;Δ′ � a#r[X := t], for every a.

(Proof in the Appendix.)

Cut in natural deduction is no more than ‘plugging the conclusion of one deriva-
tion into the assumption(s) of another’. However, now assumptions may be holes
in incomplete derivations and we can ‘plug’ in a capturing manner. The rule
(Cut) specifies that operation, and from Lemma 19 we have:

Theorem 20. (Cut) is an admissible rule.

3 Derivation-Search (Sketch)

If by ‘backwards’ reasoning we mean ‘reasoning from conclusion towards as-
sumptions’ then the machinery so far is sufficient. To mix ‘forwards’ with ‘back-
wards’ reasoning we may need a little more; consider an incomplete derivation
of A, ∀c.(A ⇒ P(c)), (∀c.P(c)) ⇒ B � B (cf. (2) in Subsection 2.2):

A

∀c.(A ⇒ P(c))

A ⇒ P(c)

P(c)···
(∀c.P(c)) ⇒ B···

B

(3)

Our syntax does not represent this as a single term-in-context because the ‘hole’
is not at the leaf of the derivation. We can represent this incomplete derivation
as a set of sequents, all sharing the same typing and freshness context. Following
theorem-provers and unification algorithms we present this as a set of goals, in
rewriting style; the rewrites below can easily be converted into derivation trees:

Definition 21. Let Ξ range over finite sets of typings r : φ, a : ∗, and freshnesses
a#r. We may call A ∈ Ξ a goal and we may call Ξ a goal set.

A ∈ Ξ has intuition ‘we know A’ — not ‘we want to prove A’ — but if A mentions
an unknown X then what we know is incomplete and we would like to complete
it, i.e. prove it. To derive φ from Γ ;Δ we start rewriting from X : φ, Γ,Δ for X
not appearing in Γ or Δ, and we try to instantiate X. We can declare success
when we arrive at a goal state of the form Ξ, r : φ such that Γ ;Δ � r : φ.

For example to prove B from A, ∀a.(A ⇒ P(a)), (∀a.P(a)) ⇒ B we can start
with X : B, a : A, p : ∀a.(A ⇒ P(a)), q : (∀a.P(a)) ⇒ B and rewrite as follows
(we may drop types to save space):
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X : B, a : A, p : ∀c.(A ⇒P(c)), q : (∀c.P(c)) ⇒ B

(Weaka)−→ X : B, a, p, q, c : ∗
(T∀E)−→ X : B, a, p, q, c, pc : A ⇒ P(c)

(T⇒E)−→ X : B, a, p, q, c, pc, pca : P(c)
(T∀I)−→ X : B, a, p, q, c, pc, pca, λc.(pca) : ∀c.P(c)

(T⇒E)−→ X : B, a, p, q, c, pc, pca, λc.(pca), q(λc.(pca)) : B

(Cut)−→ q(λc.(pca)) : B, a, p, q, c, pc, pca, λc.(pca)

We read off q(λc.(pca)) as our result. (3) is represented by the third line above:
X : B, a, p, q, pc, pca : P(c).

The following series of rewrites generates the derivation in (1) from the Intro-
duction, also discussed in Subsection 2.2 (→∗ is multiple rewrites):

X : A ⇒ C, p : A ⇒B, q : A ⇒ B ⇒ C

(Weaka)−→ X : A ⇒ C, p, q, a : A, a#X

(WeakX)−→ X : A ⇒ C, p, q, a, a#X, X ′ : C

(T⇒I)−→ X : A ⇒ C, p, q, a, a#X, X ′, λa.X ′ : A ⇒ C

(Cut)−→ λa.X ′ : A ⇒ C, p, q, a, X ′

(T⇒E)−→∗ λa.X ′ : A ⇒ C, p, q, X ′, pa : B, qa : B ⇒ C, (pa)qa : C

(Cut)−→ λa.((pa)qa) : A ⇒ C, p, q, a, pa, qa, (pa)qa

4 Conclusions

We have seen how nominal terms, with a typing system, can model ‘incomplete
derivations’ in first-order logic. We use a ‘one-and-a-halfth order’ syntax, build-
ing on ideas from nominal terms and one-and-a-halfth order logic: atoms model
variable symbols and can be quantified (we use atoms to model both type and
term variables); unknowns model ‘holes’ in the derivation. This directly reflects
informal practice, in which holes in incomplete derivations are instantiated (sub-
stituted with capture).

We have tested our system on examples. We have shown the fragment without
unknowns is sound and complete with respect to ‘normal’ derivations (Subsec-
tion 2.3). We have shown instantiating unknowns is sound, and explored what
weakening means in the presence of the two levels of variable (Subsection 2.4).

This paper is part of a larger project which we expect to be a fruitful source
of research. In roughly decreasing order of certainty, we envisage the following:

Curry-Howard supposes normalisation of derivations — this translates to an
operational semantics for terms (Definition 3). This has to be more than ‘remove
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all β-reducts’ because, for example, the β-reduct in (λa.X)Y cannot be reduced.
To address this, an investigation into two-and-a-halfth order λ-calculus is ongo-
ing. This has λa and also a λX , substitution for X does not avoid capture by
λa, and nominal terms style α-equivalence. This paper would then be a rather
powerful type system (more than Hindley-Milner for example) for the λX-free
fragment of two-and-a-halfth order λ-calculus; we are reasonably confident this
would extend to λX .

The rewrite system alluded to in Section 3 can be viewed as an independent
system and studied. On that topic, we can ask whether the ideas in this paper
can be useful for the theory or practice of writing theorem provers. Perhaps the
representation itself will be useful, but nominal unification is known to be de-
cidable [UPG04]; thus, nominal terms have some good computational properties
which we may be able to exploit. Given the scale and complexity of modern
theorem-provers, answers to such questions may take some time to emerge —
but the situation is also far from hopeless, since in the first instance only the
prover’s ‘kernel’ is involved.

Indeed, we can simplify the types to propositional logic (simple types; we drop
the predicate part) and attempt to develop the rewrite system into a unification
algorithm à la Huet [Hue02]. We can also try to enrich types in the direction of a
dependent type theory and attempt to develop the typing rules from Figure 1 into
a dependent type theory p̊a samma Martin-Löf [NPS90]. This would be distinct
from a dependent type theory with elements of nominal techniques [SS04], which
treats atoms as variable symbols.
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A Technical Appendix

We will use the following fact without comment:

Lemma 22. If Γ � r is closed (so Γ mentions no unknowns and the freshness
context is empty) and Γ � r is typable, then r mentions no unknowns.

Proof (of Theorem 14). By induction on the derivation of Γ � r : φ.

− The case of (Tax). Suppose Γ, a : φ � a : φ.
It is easy to calculate that important(Γ, a : φ � a) = {φ}; then φ � φ is a fact (see
Footnote 6).
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− The case of (T⇒I). Suppose Γ, a : φ � λa.s : φ⇒ ψ and Γ, a : φ � s : ψ.
By inductive hypothesis important(Γ, a : φ � s) � ψ. We use (⇒I).
If important(Γ, a : φ � λa.s) = important(Γ, a : φ � s) \ {φ} then we discharge φ.
If important(Γ, a : φ � λa.s) = important(Γ, a : φ � s) then we discharge φ zero
times. There are no other possibilities.
− The case of (T⇒E). Suppose Γ � r′r : ψ and Γ � r′ : φ⇒ ψ and Γ � r : φ.
By inductive hypothesis important(Γ � r′) � φ⇒ ψ and important(Γ � r) � φ.
By Lemma 12 and (T⇒E),

important(Γ � r′) ∪ important(Γ � r) � ψ.

By the syntax-directed nature of the freshness rules in Figure 1, Γ � a#r′r if
and only if both of Γ � a#r′ and Γ � a#r hold. Therefore,

important(Γ � r′r) = important(Γ � r′) ∪ important(Γ � r)
The result follows.
− The case of (T∀I). Suppose Γ, a : ∗ � λa.r : ∀a.φ, where

Γ, a : ∗ � r : φ and a 	∈ fa(important(Γ, a : ∗ � r)).
By inductive hypothesis important(Γ, a : ∗ � r) � φ. By (∀I),

important(Γ, a : ∗ � r) � ∀a.φ.
− The case of (T∀E). Suppose Γ, b : ∗ � rb : φ[a := b] and Γ, b : ∗ � r : ∀a.φ.
By inductive hypothesis important(Γ, b : ∗ � r) � ∀a.φ. By (∀E),

important(Γ, b : ∗ � r) � φ[a := b].

By reasoning similar to the case of (T⇒E) we can calculate that

important(Γ, b : ∗ � rb) = important(Γ, b : ∗ � r) ∪ important(Γ, b : ∗ � b : ∗).

Now it is a fact that important(Γ, b : ∗ � b : ∗) = ∅. The result follows.
− The case of (Tfr). Suppose Γ � r : φ, and

Γ,A � r : φ and Γ,A � b#r where A ∈ {b : φ, b : ∗}.

By inductive hypothesis important(Γ,A � r) � φ.
If A = b : ∗ then

important(Γ,A � r) = important(Γ � r)
and the result follows immediately. If A = b : ψ then since Γ,A � b#r again

important(Γ,A � r) = important(Γ � r).
The result follows.

By abuse of appendices, we place the proof of Theorem 18 before that of Theo-
rem 15. There is no circularity in the proofs and it is convenient for brevity; the
special case of Theorem 18 when Γ mentions no unknowns, is needed to prove
Theorem 15.
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Proof (of Theorem 18). By induction on derivations. Only the case of (T∀I) is
of interest.

− Suppose Γ, a : ∗;Δ � r : φ and a 	∈ fa(important(Γ, a : ∗;Δ � r)). By inductive
hypothesis Γ, a : ∗, B;Δ, b#X � r : φ where X = unkn(Γ ) and b 	∈ Γ, a : ∗. It is
not hard to calculate that Γ, a : ∗, B;Δ, b#X � b#r and so

a 	∈ fa(important(Γ, a : ∗, B;Δ, b#X � r)).
The result follows.

Proof (of Theorem 15). We prove by induction on the derivation of Φ � φ that
there exists some closed typable Γ � r such that:

− important(Γ � r) ⊆ Φ and Γ � r : φ.
− Γ satisfies a uniqueness property: if a : φ ∈ Γ and x : φ ∈ Γ then x = a (so
there is at most one atom of each type in Γ ).7

We consider each possible rule in turn:

− The case of no rule; Φ � φ because φ ∈ Φ.
Suppose fa(φ) = {b1, . . . , bn}. We take Γ = a : φ, b1 : ∗, . . . , bn : ∗ and r ≡ a.
− The case (⇒I) Suppose Φ � φ⇒ ψ and Φ, φ � ψ.
By inductive hypothesis there exists Γ � r such that important(Γ � r) ⊆ Φ ∪ {φ}
and Γ � r : ψ.
If a : φ ∈ Γ for some a then let Γ ′ = Γ . If a : φ ∈ Γ for no a then let Γ ′ = Γ, a : φ
for some a not appearing in Γ . By Theorem 18 (see the comment preceding this
proof) Γ ′ � r : φ. It is also a fact that important(Γ � r) = important(Γ ′ � r).

By (T⇒I) we have Γ ′ � λa.r : φ⇒ ψ. It is a fact that Γ ′ � a#λa.r. Therefore
by uniqueness, important(Γ ′ � λa.r) = important(Γ ′ � r) \ {φ} The result
follows.
− The case (⇒E). Suppose Φ � ψ and Φ � φ⇒ ψ and Φ � φ.
By inductive hypothesis there exist:
• Γ ′ � r′ such that important(Γ ′ � r′) ⊆ Φ and Γ ′ � r′ : φ⇒ ψ.
• Γ � r such that important(Γ � r) ⊆ Φ and Γ � r : φ.

Without loss of generality we may assume that Γ ∪ Γ ′ satisfies our uniqueness
condition; we rename atoms to make this true if necessary.
We use (T⇒E) and the fact that important(Γ ∪ Γ ′ � r′r) ⊆ Φ.
− The case (∀I). Suppose Φ � ∀a.φ where a 	∈ fa(Φ) and Φ � φ.
By inductive hypothesis there exists Γ � r such that important(Γ � r) ⊆ Φ and
Γ � r : φ. Since a 	∈ fa(Φ) we know that a 	∈ fa(important(Γ � r)).
If a : ∗ ∈ Γ then let Γ ′ = Γ . If a : ξ ∈ Γ for some type ξ then we are in the
pathological situation that a 	∈ fa(φ) and a : ξ ∈ Γ ‘by mistake’; we rename a. If
a : ∗ 	∈ Γ then let Γ ′ = Γ, a : ∗. By Theorem 18 Γ ′ � r : φ. It is also a fact that
important(Γ � r) = important(Γ ′ � r).
We use (T∀I) and the fact that important(Γ ′ � r) = important(Γ ′ � λa.r).
− The case (∀E). Suppose Φ � φ[a := b] and Φ � ∀a.φ.
7 Here x ranges over all atoms, not necessarily permutatively, so perhaps x = a.
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By inductive hypothesis there are Γ and r such that important(Γ � r) ⊆ Φ and
Γ � r : ∀a.φ.
If b : ∗ ∈ Γ then let Γ ′ = Γ . If b : ∗ 	∈ Γ then let Γ ′ = Γ, b : ∗. By Theorem 18
Γ ′ � r : ∀a.φ. It is also a fact that important(Γ � r) = important(Γ ′ � r).

We use (T∀E) and the fact that

important(Γ ′ � r) = important(Γ ′ � rb).
Lemma 23. Suppose that:

− Γ,X : ψ;Δ � r : φ and Γ ;Δ � t : ψ.
− Γ ;Δ′ � a#t for every a#X ∈ Δ.

Then important(Γ ;Δ′ � r[X := t]) ⊆ important(Γ,X : ψ;Δ � r).
Proof. By a routine induction on r. We consider cases:

− The case of a. Easy.
− The case of X. We calculate:

important(Γ,X : ψ;Δ � X) = {φ | a : φ ∈ Γ, a#X 	∈ Δ}
By assumption important(Γ ;Δ′ � t) ⊆ {φ | a : φ ∈ Γ, a#X 	∈ Δ}.

Other cases are easier.

Proof (of Lemma 19). By induction on the derivation of Γ,X : ψ;Δ � r : φ. The
first part is routine, we consider only two cases:

− The case (a#b′). Suppose Γ, a : ∗, b : φ′, X : ψ;Δ � a#b is derived by (a#b′).
Then a 	∈ fa(φ′) and it follows that

Γ, a : ∗, b : φ′;Δ′ � a#b

Since b[X := t] ≡ b, we are done.
− The case (a#λb). Suppose Γ,X : ψ;Δ � a#r and Γ,X : ψ;Δ � a#λb.r is de-
rived by (a#λb). By inductive hypothesis Γ ;Δ′ � a#r[X := t] and so

Γ ;Δ � a#λb.(r[X := t])

Since λb.(r[X := t]) ≡ (λb.r)[X := t], we are done.

For the second part we consider some cases:

− The case (Tax). Suppose Y : ξ ∈ Γ and Γ,X : ψ;Δ � Y : ξ is derived by
(Tax). Then Γ ;Δ′ � Y : ξ. Since Y ≡ Y [X := t], we are done.
Similarly for Γ,X : ψ;Δ � a : ξ.
Suppose Γ,X : ψ;Δ � X : ψ is derived by (Tax). By assumption Γ ;Δ′ � t : ψ.
Since t ≡ X [X := t], we are done.
− The case (T⇒I). Since (λa.r)[X := t] ≡ λa.(r[X := t]). The cases of (T⇒E)
and (T∀E) are similar.
− The case (T∀I). Since (λa.r)[X := t] ≡ λa.(r[X := t]) and from Lemma 23.
− The case (Tfr).
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Suppose Γ, A, X :ψ;Δ � r : φ because Γ, A, X :ψ; Δ, b#X � r : φ and suppose
Γ, A, X :ψ; Δ, b#X � b#r, where b 	∈ Δ and A is b : ∗ or b : ξ for some ξ.

By inductive hypothesis and some calculations, Γ, A; Δ′, b#X ′�r[X := t] :φ
and Γ, A; Δ′, b#X ′ � b#r[X := t], for a suitable X ′ and Δ′ where b 	∈ Δ′. The
result follows.

(A ∈ {a : φ, a : ∗, X : φ})
(Tax)

Γ, A; Δ � A

Γ ;Δ � r : ⊥
(T⊥E)

Γ ;Δ � xf(r) : φ

Γ, a : φ; Δ � r : ψ
(T⇒I)

Γ, a : φ; Δ � λa.r : φ ⇒ ψ

Γ ; Δ � r
′ : φ ⇒ ψ Γ ; Δ � r : φ

(T⇒E)
Γ ; Δ � r

′

r : ψ

Γ, a : ∗; Δ � r : φ a �∈ fa(important(Γ, a : ∗; Δ � r))
(T∀I)

Γ, a : ∗; Δ � λa.r : ∀a.φ

Γ, b : ∗; Δ � r : ∀a.φ
(T∀E)

Γ, b : ∗; Δ � rb : φ[a := b]

Γ, A; Δ, b#X � r : φ Γ, A; Δ, b#X � b#r (A ∈ {b : ψ, b : ∗}, b �∈ Δ)
(Tfr)

Γ ;Δ � r : φ

(a#b)
Γ, a : φ, b : φ; Δ � a#b

(a#b′′)
Γ, a : ∗, b : ∗; Δ � a#b

(a#λa)
Γ ; Δ � a#λa.r

Γ ; Δ � a#r
(a#λb)

Γ ; Δ � a#λb.r

(a#X)
Γ ; Δ, a#X � a#X

(a �∈ fa(φ))
(a#b′)

Γ, a : ∗, b : φ; Δ � a#b

Γ ; Δ � a#r
′

Γ ; Δ � a#r
(a#app)

Γ ; Δ � a#r
′

r

Γ ; Δ � a#r
(a#xf)

Γ ; Δ � a#xf(r)

Fig. 1. Typing and freshness derivation rules

⊥
(⊥E)

φ

[φ]
·
·
·
ψ

(⇒I)
φ ⇒ ψ

φ ⇒ ψ φ
(⇒E)

ψ

Φ
·
·
·
φ (a �∈ fa(Φ))

(∀I)
∀a.φ

∀a.φ
(∀E)

φ[a := b]

Fig. 2. Natural Deduction style derivation rules

Γ ;Δ � r : φ (X �∈ Γ )
(WeakX)

Γ, X : ψ; Δ � r : φ

Γ ; Δ � r : φ (B ∈ {b : ψ, b : ∗}, a �∈ Γ )
(Weaka)

Γ, B; Δ, b#unkn(Γ ) � r : φ

Γ, X:ψ; Δ, a1#X, . . . , an#X � r : φ Γ ;Δ � t:ψ Γ ;Δ � ai#t (1≤i≤n) (X �∈Δ)
(Cut)

Γ ; Δ � r[X := t] : φ

Fig. 3. Admissible rules
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Abstract. In this paper, we define new decision procedures for Łukasiewicz log-
ics. They are based on particular integer-labelled hypersequents and of logical
proof rules for such hypersequents. These rules being proved strongly invertible
our procedures naturally allow one to generate countermodels. From these re-
sults we define a “merge”-free calculus for the infinite version of Łukasiewicz
logic and prove that it satisfies the sub-formula property. Finally we also propose
for this logic a new terminating calculus by using a focusing technique.

1 Introduction

Łukasiewicz logics, including finite and infinite versions, are among the most studied
many-valued logics [10] and the infinite version Ł is, like Gödel-Dummett logic (LC)
and Product logic (Π), one of the fundamental t-norm based fuzzy logics [8]. There exist
various calculi and methods dedicated to proof-search in these logics that are based on se-
quents [1,12], hypersequents [4,12] or relational hypersequents [3] and on tableaux [13]
or goal-directed approach [11]. In this paper, we consider proof-search in propositional
Łukasiewicz logics through a particular approach that consists firstly in reducing (by a
proof-search process) a hypersequent into a set of so-called irreducible hypersequents
and then secondly in deciding these specific hypersequents by a particular procedure.
Such an approach has been studied for Gödel-Dummett logic [2] and also the infinite
version Ł of Łukasiewicz logics [3] but not for the finite versions. In this context we are
interested in deciding irreducible hypersequents through a countermodel search process
and thus in providing new decision procedures that generate countermodels.

Therefore we define labelled hypersequents, called Z-hypersequents, in which com-
ponents are labelled with integers, such labels introducing semantic information in the
search process. Then we define proof rules that deal with labels by using the addition
and subtraction and then prove that they are strongly invertible. It is important to notice
that we define a same set of simple proof rules for both finite and infinite versions of
Łukasiewicz logic. By application of these rules we show how we can reduce the de-
cision problem of every Z-hypersequent to the decision problem of a set of so-called
atomic Z-hypersequents that only contain atomic formulae. To solve the later problem
we associate a set of particular inequalities to these hypersequents and then strongly
relate the existence of a countermodel to the existence of a solution for this set of in-
equalities. Thus, by using results from linear and integer programming [16], we can
decide any atomic Z-hypersequent and also generate a countermodel in case of non-
validity. Thus, from the same set of rules, we provide a new decision procedure for the

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 194–207, 2008.
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infinite version but also one for the finite versions of Łukasiewicz logic, both including
countermodel generation. After this first contribution we focus, in the rest of the pa-
per, on the infinite version denoted Ł. The next contribution is the definition of a new
calculus for this logic that is characterized by a single form of axioms and the absence
of the “merge” rule that is not appropriate for proof-search. In addition our labelling of
components by integers can be seen as a kind of merge-elimination technique that could
be applied to hypersequent calculi given in [4,12]. From a refinement of the notion Z-
hypersequent, by using a focusing technique defined in [12], the last contribution is a
terminating calculus for Ł, that is proved sound and complete, in which only one rule is
not (strongly) invertible. We complete these results by showing, in the appendix, how
to obtain a labelled calculus for Bounded Łukasiewicz logics ŁBn with n � 2 [4].

2 Łukasiewicz Logics

We consider here the family of Łukasiewicz logics denoted Łn with n∈ N
1 = {2, . . .}∪

{∞}, set of natural numbers with its natural order �, augmented with a greatest element
∞. In the case n = ∞, Ł∞, also denoted by Ł, is one of the most interesting multi-valued
logics and one of the fundamental t-norms based fuzzy logics (see [8] for more details).
In the case n �= ∞, Łn denotes the finite versions of Łukasiewicz logics.

The set of propositional formulae, denoted Form, is inductively defined from a set of
propositional variables with a bottom constant ⊥ (absurdity) by using the connectives
∧,∨, 	 (strong conjunction) and ⊕ (strong disjunction). All the connectives can be
expressed by using the ⊃ connective: ¬A =def A⊃⊥, A⊕B =def ¬A⊃B, A	B =def

¬(A⊃¬B), A∨B =def (A⊃B)⊃B and A∧B =def ¬(¬A∨¬B).
In the case of Ł, the logic has a following Hilbert axiomatic system:

Ł1 A⊃ (B⊃A)
Ł2 (A⊃B)⊃ ((B⊃C)⊃ (A⊃C))
Ł3 ((A⊃B)⊃B)⊃ ((B⊃A)⊃A)
Ł4 ((A⊃⊥)⊃ (B⊃⊥))⊃ (B⊃A)

with the rule A⊃B A
B

[mp]

Another Hilbert axiomatic system can be obtained by adding axioms Ł1 and Ł3 to
any axiomatization of the multiplicative additive fragment of Linear Logic [14].

For the finite versions Łn with n �= ∞, a Hilbert axiomatic system is obtained by
adding to the previous axioms of Ł the following axioms : (n−1)A⊃nA	nA⊃(n−1)A
and (pAp−1)n⊃mAp	mAp⊃ (pAp−1)n for every integer p = 2, . . . ,n−2 that does not
divide n−1, with kA = A⊕ . . .⊕A (k times) and Ak = A	 . . . 	A (k times).

A valuation for Łn is a function [[·]] from the set of propositional variables Var to [0,1]
if n = ∞ and to [0,1/(n−1), . . . ,(n−2)/(n−1),1] if n �= ∞. It is inductively extended
to formulae as follows:

[[A⊃B]] = min(1,1− [[A]]+ [[B]])
[[⊥]] = 0
[[¬A]] = 1− [[A]]
[[A	B]] = max(0, [[A]]+ [[B]]−1)

[[A⊕B]] = min(1, [[A]]+ [[B]])
[[A∧B]] = min([[A]], [[B]])
[[A∨B]] = max([[A]], [[B]])

A formula A is valid in Łn, written |=Łn
A, iff [[A]] = 1 for all valuations [[·]] for Łn.
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In this paper we study proof-search in the finite and infinite versions of Łukasiewicz
logics. Our approach based on labelled calculi is an alternative to existing works based
on sequents [1,12], on multisets of sequents, called hypersequents [4,12] and relational
hypersequents [3] but also on tableaux [13] or goal-directed approach [11]. It consists
first in reducing (by a proof-search process) a hypersequent into a set of so-called irre-
ducible hypersequents and then in deciding these hypersequents. It has been studied for
LC [2] and also the infinite version Ł [3] but not for the finite versions. Like for recent
works in Gödel-Dummett Logics [7,9] we aim at deciding irreducible hypersequents
through a countermodel search process and then at providing new calculi and decision
procedures that allow us to generate countermodels.

3 Labelled Proof Rules for Łn

In this section, we present for Łn the definition of integer-labelled hypersequents, la-
bels introducing semantic information in the search process, and of labelled proof rules
that are strongly invertible in order to generate countermodels. Let us remind that the
hypersequent structure Γ1 �Δ1 | . . . | Γk �Δk has been introduced as a natural general-
ization of Gentzen’s sequents [2]. It is a multiset of sequents, called components, with
”|” denoting a disjunction at the meta-level.

Definition 1. A Z-hypersequent is a hypersequent of the form: Γ1�n1 Δ1 | . . . |Γk�nk Δk

where for i = 1, . . . ,k, ni ∈ Z, and Γi and Δi are multisets of formulae.

Definition 2. A Z-hypersequent G = Γ1 �n1 Δ1 | . . . | Γk �nk Δk is valid in Łn iff for
any valution [[·]] for Łn, there exists i ∈ {1, . . . ,n} such that: Γi�� � ��Δi��− ni where
 /0��= 1, �� /0��= 0, Γi��= 1 + ∑

A∈Γi

([[A]]−1) and ��Δi��= ∑
B∈Δi

[[B]].

A formula A is valid in Łnif and only if the Z-hypersequent�0A is valid in Łn. Moreover
the Z-hypersequent A1

1, . . . ,A
1
l1
�0 B1

1, . . . ,B
1
m1
| . . . | Ak

1, . . . ,A
k
l1
�0 Bk

1, . . . ,B
k
mk

is valid in

Łnif and only if (A1
1	 . . .	A1

l1
)⊃ (B1

1⊕ . . .⊕B1
m1

)∨ . . . ∨(Ak
1	 . . .	Ak

l1
)⊃(Bk

1⊕ . . .⊕
Bk

mk
) is valid in Łn.

In comparison with hypersequents in [4,12] where the interpretation of components
is such that one has disjunctions (⊕) on the both sides, our aim here is to recover the
standard interpretation with conjunctions (	) on the left-hand side and disjunctions (⊕)
on the right-hand side.

Now we define a set of proof rules, presented in Figure 1, dealing with these struc-
tures. They mainly decompose the principal formula and simply modify the labels by
addition or substraction of 1.

Considering a proof rule as composed of premises Hi with a conclusion C, it is sound
if, for any instance of the rule, the validity of the premises Hi entails the validity of C. It
is strongly sound if, for any instance of the rule and any valuation [[·]], if [[·]] is a model of
all the Hi then it is a model of C. Moreover a proof rule is invertible if, for any instance
of the rule, the non-validity of at least one Hi entails the non-validity of C. It is strongly
invertible if, for any instance of the rule and any valuation [[·]], if [[·]] is a countermodel
of at least one Hi then it is a countermodel of C. We can observe that strong invertibility
(resp. soundness) implies invertibility (resp. soundness).
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G | Γ,A,B�n Δ G | Γ�n−1 Δ

G | Γ,A	B�n Δ
[	L]

G | Γ�n Δ | Γ�n+1 A,B,Δ

G | Γ�n A	B,Δ
[	R]

G | Γ�n Δ | Γ,A,B�n+1 Δ

G | Γ,A⊕B�n Δ
[⊕L]

G | Γ�n A,B,Δ G | Γ�n−1 Δ

G | Γ�n A⊕B,Δ
[⊕R]

G | Γ�n Δ | Γ,B�n+1 A,Δ

G | Γ,A⊃B�n Δ
[⊃L]

G | Γ,A�n B,Δ G | Γ�n−1 Δ

G | Γ�n A⊃B,Δ
[⊃R]

G | Γ,A�n Δ | Γ,B�n Δ

G | Γ,(A∧B)�n Δ
[∧L]

G | Γ�n A,Δ G | Γ�n B,Δ

G | Γ�n A∧B,Δ
[∧R]

G | Γ,A�n Δ G | Γ,B�n Δ

G | Γ,A∨B�n Δ
[∨L]

G | Γ�n A,Δ | Γ�n B,Δ

G | Γ�n A∨B,Δ
[∨R]

Fig. 1. Proof rules for Z-hypersequents in Łn

Theorem 1 (Soundness). The rules of Figure 1 are strongly sound for Łn.

Proof. We only develop the cases of [⊃L] and [⊕R] rules, the other cases being similar.
Case [⊃L]. Let [[·]] be a model of G |Γ�k Δ |Γ,B�k+1 A,Δ in Łn. Then we have [[·]] is a

model of G, Γ��� ��Δ��−k or Γ��+([[B]]−1)� ��Δ��+[[A]]−(k+1). Thus, we obtain
[[·]] is a model of G, Γ��+(1−1) � ��Δ��−k or Γ��+((1− [[A]]+[[B]])−1) � ��Δ��−k.
We deduce that [[·]] is a model of G or Γ��+(min(1,1− [[A]]+ [[B]])− 1) � ��Δ��− k.
Therefore [[·]] is a model of G | Γ,A⊃B�n Δ.

Case [⊕R]. Let [[·]] be a model of G | Γ�k A,B,Δ and of G | Γ�k−1 Δ in Łn. Thus, [[·]]
is a model of G, or Γ��� ��Δ��+[[A]]+ [[B]]− k and Γ�� � ��Δ��− (k−1) hold. Then
[[·]] is a model of G or the inequality Γ�� � ��Δ��+ min(1, [[A]]+ [[B]])− k holds. Thus,
[[·]] is a model of G | Γ�n A⊕B,Δ.

Theorem 2. The rules of Figure 1 are strongly invertible for Łn.

Proof. We only develop the cases of [⊃L] and [⊕R] rules, the other cases being similar.
Case [⊃L]. Let [[·]] be a countermodel of G | Γ�k Δ | Γ,B�k+1 A,Δ in Łn. Then [[·]] is

a countermodel of G and the inequalities Γ��> ��Δ��− k or Γ��+([[B]]−1) > ��Δ��+
[[A]]− (k + 1) hold. Therefore, [[·]] is a countermodel of G and the inequality Γ��+
(min(1,1− [[A]]+ [[B]])−1) > ��Δ��− k holds. We deduce that [[·]] is a countermodel of
G | Γ,A⊃B�n Δ.

Case [⊕R]. Let [[·]] be a countermodel of G | Γ�k A,B,Δ in Łn. Then we have [[·]] is a
countermodel of G and Γ��> ��Δ��+[[A]]+[[B]]−k. Thus, the inequality Γ��> ��Δ��+
min(1, [[A]]+[[B]])−k holds. Therefore, [[·]] is a countermodel of G |Γ�n A⊕B,Δ. Let [[·]]
be a countermodel of G | Γ�k−1 Δ. Then [[·]] is a countermodel of G and Γ��> ��Δ��−
(k−1) holds. Thus, [[·]] is a countermodel of G and Γ��> ��Δ��+min(1, [[A]]+ [[B]])−k
holds. Then we deduce that [[·]] is a countermodel of G | Γ�n A⊕B,Δ.

Having proved these properties we now define what an atomic Z-hypersequent is and
show that we can reduce any Z-hypersequent H into a set S of atomic Z-hypersequents,
such that H is valid iff the elements of S are valid.
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Definition 3. An atomic Z-hypersequent is a Z-hypersequent which only contains
atomic formulae.

Theorem 3. The application of the rules of Figure 1 to a given Z-hypersequent termi-
nates with atomic Z-hypersequents.

Proof. To prove the termination, we show that for every rule, its conclusion is more
complex than its premises by using a measures of complexity over the formulae [6].
This measure, called α, is defined by: α(A) = 1 where (A ∈ Var∪{�,⊥}); α(A�B) =
α(A)+α(B)+1 where �∈ {∧,∨,⊃,⊕,	}; and α(¬A) = α(A)+1. We can see that the
order relation < on formulae, defined by A < B iff α(A) < α(B), is well-founded. Let
Γ1 and Γ2 two multisets of formulae, we have Γ1 >m Γ2 iff Γ2 is obtained form Γ1 by
replacing a formula by a finite number of formulae, each in which is of lower measure
than the replaced formula. Since the relation order on pure formulae and sentences is
well-founded, the order relation >m is well-founded, for more details [5]. Similarly, we
define a well-founded relation >>m on Z-hypersequents, induced by the order relation
>m, by: G1 >>m G2 iff G2 is obtained form G1 by replacing a component of G1 by a
smaller finite set of components, where a component Γ2�n2 Δ2 is smaller than Γ1�n1 Δ1

iff Γ1∪Δ1 >m Γ2∪Δ2. By using this order relation, it is easy to prove for every rule, its
premises are smaller than its conclusion. Finally, there is always a rule for any sequent
which is not atomic. Therefore, we deduce that the application of our rules to a given
Z-hypersequent terminates with atomic Z-hypersequents.

4 New Decision Procedures for Łn

By using Theorem 3 we can generate, from a given Z-hypersequent, to a set of atomic
Z-hypersequents by application of our logical rules. After this step of bottom-up proof-
search we now consider the resulting set of atomic Z-hypersequents in the perspective
of countermodel generation. For respectively Ł and Łn with n �= ∞, we associate to each
atomic Z-hypersequent a set of particular inequalities and then relate the existence of a
countermodel to the existence of solution for this set.

Definition 4 (SIH ). Let H = Γ1 �n1 Δ1 | . . . | Γk �nk Δk be an atomic Z-hypersequent
and xp be a real variable associated to every propositional variable p. We define the set
of inequalities SIH associated to H by: SIH = {(⊙Γ1) > (

⊕
Δ1)− n1, . . . ,(

⊙
Γk) >

(
⊕

Δk)−nk} where
⊙

/0 = 1,
⊕

/0 = 0,
⊙

(Γi) = 1+ ∑
A∈Γi

(xA−1) and
⊕

(Δi) = ∑
A∈Δi

xA

with x⊥ = 0.

Theorem 4. An atomic Z-hypersequent H has a countermodel in Ł iff SIH has a
solution over [0,1].

Definition 5 (SIn
H ). Let H = Γ1 �m1 Δ1 | . . . | Γk �mk Δk be an atomic Z-hypersequent

and xp be a real variable associated to every propositional variable p. We define the
set of inequalities SIn

H associated to H by: SIn
H = {(⊙n Γ1)− 1 ≥ (

⊕
n Δ1)− ((n−

1)∗m1), . . . ,(
⊙

n Γk)−1≥ (
⊕

n Δk)− ((n−1)∗mk)}, where
⊙

n /0 = n−1,
⊕

n /0 = 0,
⊙

n(Γi) = (n−1)+ ∑
A∈Γi

(xA− (n−1)) and
⊕

n(Δi) = ∑
A∈Δi

xA where x⊥ = 0.
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Theorem 5. An atomic Z-hypersequent H has a countermodel in Łn with n �= ∞ iff SIn
H

has a solution over the set of integers {0, . . . ,n−1}.

The proofs of the above theorems are given in appendix B.
By using linear and integer programming [16], we can decide a Łn atomic Z-hyper-

sequent in polynomial time. If (xA1 = r1, . . . ,xAk = rk) is a solution of the set SIn
H (resp.

SIH ), where {xA1 , . . . ,xAk} is the set of all its variables, then the valuation [[·]] such that
∀i∈ {1, . . . ,k}, [[Ai]] = ri/(n−1) (resp. [[Ai]] = ri) is a countermodel of H in Łn (resp. in
Ł). For a given Z-hypersequent, by Theorem 3 we can generate a set of atomic Z-hyper-
sequents by application of rules of Figure 1. Then we can build the set SIH (resp. SIn

H )
associated to each atomic Z-hypersequent H and decide by using linear (resp. integer)
programming if it has a countermodel or not and thus decide its validity in Ł (resp. Łn

with n �= ∞).
These two main steps, namely proof search followed by countermodel search (based

on the above theorems) provide new decision procedures for Łukasiewicz logics. A
key point here is the generation of countermodels because of the strong invertibility of
rules: any countermodel of an atomic Z-hypersequent on the leaf of the derivation tree
is a countermodel of the initial Z-hypersequent on the root of this tree.

We illustrate our new procedure through examples. If we consider H1 = �0A⊃ (B⊃
A) and H2 = �0A∨ (A⊃⊥), by application of proof rules we obtain the derivations:

A,B�0 A A�−1
[⊃R]

A�0 B⊃A �−1
[⊃R]

�0A⊃ (B⊃A)

�0A | A�0⊥ �0A | �−1
[⊃R]

�0A | �0A⊃⊥
[∨R]

�0A∨ (A⊃⊥)

Thus, H1 has a countermodel in Ł if one of the inequalities 1 > 1 (�−1), xA > 1
(A�−1) and xB > 1 (A,B�0 A) has a solution over [0,1]. Since 1 > 1, xA > 1 and xB > 1
have no solution over [0,1], we deduce that H1 is valid in Ł. For H2, since xA = 1 is an
integer solution of the system {2 > xA,xA > 0}, the valuation [[·]] defined by [[A]] = 1

2 is
a countermodel of �0A | A�0⊥ in Ł3. Then it is a countermodel of H2 in Ł3.

5 The ZŁ Calculus

In this section we propose a new calculus for Ł called ZŁ, that is defined by the rules
in Figure 1 and the following axiom, special rules and structural rules:

�n
[Ax](n < 0)

G | Γ�n−1 Δ

G | Γ,⊥�n Δ
[⊥L]

G | Γ�n−1 Δ

G | Γ,A�n Δ,A
[SR]

G

G | Γ�n Δ
[EW ]

G | Γ�n Δ

G | Γ,A�n Δ
[IWL]

G | Γ�n Δ

G | Γ�n Δ,A
[IWR]

G | Γ�n Δ | Γ�n Δ

G | Γ�n Δ
[EC]

G | Γ1,Γ2 �n1+n2+1 Δ1,Δ2

G | Γ1 �n1 Δ1 | Γ2 �n2 Δ2
[SP]
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Theorem 6 (Soundness). The rules of the ZŁ calculus are sound.

Proof. From Theorem 1 the logical rules of ZŁ are sound. Similar arguments are used
for the other rules.

Theorem 7 (Completeness). If a Z-hypersequent is valid in Ł then it is derivable in
the ZŁ calculus.

Proof. See appendix B.

We illustrate our calculus by considering our example H1 = �0A⊃ (B⊃A). By appli-
cation of proof rules we obtain the following derivation:

�−1
[IWL]

B�−1
[SR]

A,B�0 A

�−1
[IWL]

A�−1
[⊃R]

A�0 B⊃A �−1
[⊃R]

�0A⊃ (B⊃A)

From the ZŁ calculus we can show that the weakening rules ([EW ], [IWL] and [IWR])
can be “absorbed” in the axiom by using an approach similar to the one of [17]. Thus
we obtain a new simplified calculus ZŁ′ without these rules and with the following
axiom:

G | Γ�n Δ
[Ax](n < 0) .

Proposition 1. The ZŁ calculus satisfies the subformula property, namely any formula
appearing in a proof of H in ZŁ is a subformula of a formula in H .

An important point of these calculi is that they
are “merge”-free. It means that the following rule,
called merge, is not needed.

G | Γ1 �Δ1 G | Γ2 �Δ2

G | Γ1,Γ2 �Δ1,Δ2
[M]

In hypersequent calculi for Ł in [4,3] a challenge, in the perspective of proof-search,
consists in eliminating this rule that is not appropriate because it is not invertible and
context splittings on the left and right sides could be very expensive. The rule has
been eliminated in [15] by replacing the existing axioms by the following axiom G |

Γ,

n
︷ ︸︸ ︷
⊥, . . . ,⊥�A1, . . . ,An,Δ, where n � 0. But our approach based on the labelling of

components by integers allows us to eliminate the merge rule without having to com-
plicate the form of axioms.

6 A Terminating Calculus for Ł

Now, we consider an approach based on a focusing technique in [12] in order to provide
a terminating calculus for Ł. Thus we consider now so-called focused hypersequents.

Definition 6. A focused Z-hypersequent is a structure of the form [p]H where H is a
Z-hypersequent, p a propositional variable, and [p]H is valid in Ł iff H is valid in Ł.
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Let H = Γ1 �n1 Δ1 | Γ2 �n2 Δ2 | . . . | Γk �nk Δk be a Z-hypersequent. We denote by
le f t(H ) the multiset Γ1∪Γ2∪ . . . ∪Γk and by right(H ) the multiset Δ1∪Δ2∪ . . . ∪Δk.
We define a new calculus, called ZŁT, that consists of the logical rules in Figure 1 with
the same focus for premises and conclusion, and of these following rules:

[p]G | Γ�n Δ
[Ax](n < 0)

[p]G | Γ�n−1 Δ

[p]G | Γ,⊥�n Δ
[⊥L]

[p]G | Γ�n−1 Δ

[p]G | Γ,A�n Δ,A
[SR]

[q]H

[p]H
[F ] where q ∈ le f t(H )∩ right(H ) and p /∈ le f t(G)∩ right(G)

[p]G | k2Γ1,k1Γ2 �n′ k2Δ1,k1Δ2 | S
[p]G | Γ1,k1 p�n1 Δ1 | Γ2 �n2 Δ2,k2 p

[R]

where G,Γ1,Γ2,Δ1 and Δ2 are atomic and k1 > 0,k2 > 0, p /∈ Γ1∪Γ2∪Δ1∪Δ2.
S is Γ1,k1 p�n1 Δ1 or Γ2 �n2 Δ2,k2 p and n′ = k2 ∗ n1 + k1 ∗ n2 + k1 + k2− (k1 ∗ k2 + 1).

Theorem 8. All the rules of ZŁT except [R] are strongly invertible.

Proof. From Theorem 2, the logical rules of ZŁT are strongly invertible. For the other
rules we use similar arguments.

Definition 7. An irreducible focused Z-hypersequent [p]H is an atomic focused Z-
hypersequent where le f t(H )∩ right(H ) = /0, ⊥ �∈ le f t(H ) and for every component
Γ�n Δ of H , we have n � 0.

Definition 8. An inv-irreducible focused Z-hypersequent [p]H is an atomic Z-hyper-
sequent where p∈ le f t(H )∩right(H ), and for every component Γ�n Δ of H , we have
⊥ �∈ Γ, Γ∩Δ = /0 and n � 0.

Proposition 2. Any irreducible focused Z-hypersequent has a countermodel.

Proof. Let [p]H be an irreducible focused Z-hypersequent. Let [[·]] a valuation defined
by: for every A ∈ le f t(H ) we have [[A]] = 1, and for every B ∈ right(H ) we have
[[B]] = 0. It is easy to prove that [[·]] is a countermodel of [p]H .

Theorem 9. The application of ZŁT calculus to every focused Z-hypersequent termi-
nates with axioms or irreducible focused Z-hypersequents.

Proof. From Theorem 3, we see that the application of the logical rules of ZŁT to
a given focused Z-hypersequent terminates with atomic focused Z-hypersequents. By
using the order >>m defined in the proof of Theorem 3, G | Γ,⊥�n Δ >>m G | Γ�n−1 Δ
and G | Γ,A�n Δ,A >>m G | Γ�n−1 Δ hold. Now considering the rule [R], we can see
that its application with the focus p decreases strictly the number of p’s. Therefore,
in any derivation in ZŁT, the number of applications of the rules [R] and [F ] is finite.
Thus, the application of ZŁT calculus to every focused Z-hypersequent terminates.

Since there is always a rule for any Z-hypersequent which is not an axiom or an irre-
ducible Z-hypersequent, we deduce that The application of ZŁT calculus to every fo-
cused Z-hypersequent terminates with axioms or irreducible focused Z-hypersequents.
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Theorem 10 (Soundness). The rules of ZŁT are sound.

Proof. The soundness of the logical rules and the rules [Ax], [⊥L] and [SR] comes from
Theorem 6. The soundness of [F] is trivial. For the rule [R] we consider arguments
similar to those of proof of Theorem 1.

Proposition 3. If the atomic Z-hypersequent G | Γ1�n1 Δ1 | Γ2 �n2 Δ2 is valid in Ł then
either G | Γ1,Γ2 �n1+n2+1 Δ1,Δ2 | Γ1 �n1 Δ1 is valid in Ł or G | Γ1,Γ2 �n1+n2+1 Δ1,Δ2 |
Γ2 �n2 Δ2 is valid in Ł.

Proposition 4. Let [p]G | Γ1,k1 p�n1 Δ1 | Γ2�n2 Δ2,k2 p be an atomic focused Z-hyper-
sequent. If it is valid in Ł then either [p]G | k2Γ1,k1Γ2 �n′ k2Δ1,k1Δ2 | Γ1,k1 p�n1 Δ1

is valid in Ł or [p]G | k2Γ1,k1Γ2 �n′ k2Δ1,k1Δ2 | Γ2 �n2 Δ2,k2 p is valid in Ł, with k1 >
0,k2 > 0, p /∈ Γ1∪Γ2∪Δ1∪Δ2 and n′ = k2 ∗ n1 + k1 ∗ n2 + k1 + k2− (k1 ∗ k2 + 1).

Proofs of these propositions are given in appendix A.

Definition 9 (Proof-refutation tree). A proof-refutation tree is a tree where the nodes
are labelled by a focused Z-hypersequents and satisfying the following properties:

– Every internal node n labelled by H which is not an inv-irreducible Z-hypersequent
has a maximum of two children: if n has two children (resp. a single child) labelled

by H1 and H2 (resp. H ′) then H1 H2

H
[r] (resp. H ′

H
[r] ) is an instance

of a strongly invertible rule.
– Every internal node n labelled by H which is an inv-irreducible Z-hypersequent,

namely [p]G | Γ1,k1 p �n1 Δ1 | Γ2 �n2 Δ2,k2 p, has two children labelled by [p]G |
k2Γ1,k1Γ2 �n′ k2Δ1,k1Δ2 | Γ1,k1 p�n1 Δ1 and by [p]G | k2Γ1,k1Γ2 �n′ k2Δ1,k1Δ2 |
Γ2 �n2 Δ2,k2 p where n′ = k2 ∗ n1 + k1 ∗ n2 + k1 + k2− (k1 ∗ k2 + 1).

From Theorem 9, we can see that a proof-refutation tree is finite and its leaf nodes are
indexed by axioms and irreducible Z-hypersequents.

Theorem 11 (Completeness). If [p]H is valid in Ł then [p]H is provable in ZŁT.

Proof. Let [p]H be a focus Z-hypersequent and P its proof-refutation tree. We show
how to decide if an index of a given node in P is valid or not. We start by the leaf
nodes. From Theorem 9, we know that such leaf nodes are labelled by axioms or ir-
reducible focused Z-hypersequents. Thus, by using Proposition 2, we can decide all
the leaf nodes. Now we see how, from the children of a given internal node, we can
propagate validity or invalidity. Let H be an index of internal node. If H is not an
inv-irreducible focused Z-hypersequent then, from Definition 9, this node has a max-
imum of two children where if these children are labelled by H1 and H2 (resp. H ′)

then H1 H2

H
[r] (resp. H ′

H
[r] ) is an instance of a strongly invertible rule.

Thus, if H1 and H2 (resp. H ′) are valid then H is valid because [r] is sound. Else, from
the strong invertibility of [r], H has the same countermodels of its non-valid premises.
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We now deal with the nodes labelled by inv-irreducible focused Z-hypersequent. Let
n be an internal node labelled by an inv-irreducible Z-hypersequent H . Thus H is of
the form [p]G | Γ1,k1 p �n1 Δ1 | Γ2 �n2 Δ2,k2 p. and the children of n are labelled by
[p]G | k2Γ1,k1Γ2 �n′ k2Δ1,k1Δ2 | Γ1,k1 p �n1 Δ1 and [p]G | k2Γ1,k1Γ2 �n′ k2Δ1,k1Δ2 |
Γ2 �n2 Δ2,k2 p where n′ = k2 ∗ n1 + k1 ∗ n2 + k1 + k2− (k1 ∗ k2 + 1). By using Proposi-
tion 4, if one of the indexes of the children of n is valid then H is valid else H is not
valid. Therefore, if a focused Z-hypersequent is valid then it is derivable in ZŁT.

In the completeness proof (Theorem 11) we give a decision procedure for Ł based on
the concept of proof-refutation tree. Let H = �0A⊃B∨B⊃A. A proof-refutation tree
of H is given by:

[A]�−1 | A�0 B
[SR]

[A]B�0 B | B�0 A

[A]�−1 | A�0 B
[SR]

[A]B�0 B | A�0 B
[R]

[A]A�0 B | B�0 A [A]�−1 | B�0 A
[⊃R]

[A]�0 A⊃B | B�0 A [A]�0 A⊃B | �−1
[⊃R]

[A]�0 A⊃B | �0B⊃A
[∨R]

[A]�0 A⊃B∨B⊃A

From this proof refutation tree, we then deduce that H is valid.
Our method based on proof-refutation trees cannot be applied to the terminating cal-

culus in [12] because the merge and weakening rules are not invertible. Our terminating
calculus that does not contain these rules is then more efficient because all its rules
except one are (strongly) invertible: the conclusion of an invertible rule is valid iff its
premises are valid.

7 Conclusion and Perspectives

In this work, we provide new decision procedures with countermodel generation for
Łukasiewicz logics, using the approach proposed in [2]. A key point is the use of
strongly invertible rules and consequently the ability to generate countermodels. An im-
portant contribution is the definition of a new terminating calculi for the infinite version
Ł. In comparison with the calculi based on hypersequents [3,4] our calculus improves
proof-search because it has a single form of axiom and moreover does not contain the
merge rule. In further works we will define such labelled terminating calculi for the
finite versions of Łukasiewicz logics and also for Bounded Łukasiewicz logics (see
preliminary results in appendix C) for which cut-elimination will be studied. We will
also study the possible design of labelled systems for other fuzzy logics.
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A Proofs of Propositions 3 and 4

Proposition 3. If the atomic Z-hypersequent G | Γ1 �n1 Δ1 | Γ2 �n2 Δ2 is valid in Ł then
either G | Γ1,Γ2 �n1+n2+1 Δ1,Δ2 | Γ1 �n1 Δ1 is valid in Ł or G | Γ1,Γ2 �n1+n2+1 Δ1,Δ2 |
Γ2 �n2 Δ2 is valid in Ł.

Proof. Let H = G | Γ1 �n1 Δ1 | Γ2 �n2 Δ2 be an atomic Z-hypersequent where G being
Γ′1 �n′1 Δ′1 | . . . | Γ′k �n′k Δ′k. By using linear programming [16] H is valid iff there exist
α′1, . . . ,α

′
k,α1,α2 ∈ N where α′i > 0 or α j > 0 for some 1 � i � k and 1 � j � 2, such

that for every valuation [[·]],
k

∑
i=1

(α′i ∗ Γ′i��)+
2

∑
i=1

(αi ∗ Γi��) �
k

∑
i=1

(α′i ∗ ��Δ′i��)+
2

∑
i=1

(αi ∗

��Δi��)− (
k

∑
i=1

(α′i ∗ n′i)+
2

∑
i=1

αi ∗ ni). We suppose that α1 � α2. Then for every valuation

[[·]] we have
k

∑
i=1

(α′i ∗ Γ′i��)+ (α1−α2) ∗ Γ1��+ α2 ∗ (Γ1 + Γ2��) �
k

∑
i=1

(α′i ∗ ��Δ′i��)+
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(α1−α2)∗ ��Δ1��+ α2 ∗ (��Γ1 + Γ2��)− (
k

∑
i=1

(α′i ∗ n′i)+ (α1−α2)∗ n1 + α2 ∗ (n1 + n2 +

1)). Then G | Γ1,Γ2 �n1+n2+1 Δ1,Δ2 | Γ1 �n1 Δ1 is valid in Ł. The case of α2 � α1 is
symmetrical.

Proposition 4. Let [p]G | Γ1,k1 p�n1 Δ1 | Γ2 �n2 Δ2,k2 p be an atomic focused Z-hyper-
sequent. If it is valid then one of the following focused Z-hypersequents is valid:

– [p]G | k2Γ1,k1Γ2 �n′ k2Δ1,k1Δ2 | Γ1,k1 p�n1 Δ1

– [p]G | k2Γ1,k1Γ2 �n′ k2Δ1,k1Δ2 | Γ2 �n2 Δ2,k2 p

where k1 > 0,k2 > 0, p /∈ Γ1∪Γ2 ∪Δ1∪Δ2 and n′ = k2 ∗ n1 + k1 ∗ n2 + k1 + k2− (k1 ∗
k2 + 1).

Proof. We first prove by induction on k that [p]G | Γ�m Δ is valid iff G | kΓ�n kΔ where
n = k ∗m +(k− 1). Then, by Proposition 3, if [p]G | Γ1,k1 p�n1 Δ1 | Γ2 �n2 Δ2,k2 p is
valid then one of the following focused Z-hypersequents is valid:

– [p]G | k2Γ1,k1Γ2,(k1 ∗ k2)p�n′′ k2Δ1,k1Δ2,(k1 ∗ k2)p | Γ1,k1 p�n1 Δ1

– [p]G | k2Γ1,k1Γ2,(k1 ∗ k2)p�n′′ k2Δ1,k1Δ2,(k1 ∗ k2)p | Γ2 �n2 Δ2,k2 p

where n′ = k2 ∗ n1 + k1 ∗ n2 + k1 + k2− 1. Finally we prove the following result by
induction: [p]G | Γ,kp�n Δ,kp is valid in Ł iff [p]G | Γ�n−k Δ is valid in Ł. Therefore
we deduce the result.

B Proofs of Theorems 4, 5 and 7

Theorem 4. An atomic Z-hypersequent H has a countermodel in Ł iff SIH has a solu-
tion over [0,1].

Proof. Let H = Γ1�n1 Δ1 | . . . | Γk�nk Δk be an atomic Z-hypersequent. [[·]] is a counter-
model of H in Ł iff for all i ∈ {1, . . . ,k}, the inequality Γi��> ��Δi��−ni holds. Thus,
[[·]] is a countermodel of H iff for all i ∈ {1, . . . ,k}, (xp = [[p]] | p∈ Γi∪Δi) is a solution
of

⊙
Γ1 >

⊕
Δ1− n1. Therefore, H has a countermodel in Ł iff SIH has a solution.

This solution is over [0,1] because the valuations in Ł are from Var to [0,1].

Theorem 5. An atomic Z-hypersequent H has a countermodel in Łn for n �= ∞ iff SIn
H

has a solution over the set of integers {0, . . . ,n−1}.
Proof. Let H = Γ1 �m1 Δ1 | . . . | Γk �mk Δk be an atomic Z-hypersequent. By using
arguments used in the proof of Theorem 4, we show that H has a countermodel in Łn

iff the inequality 1 + ∑
A∈Γi

(xA− 1) > ∑
A∈Δi

xA has a solution over [0,1/(n− 1), . . . ,(n−

2)/(n−1),1]. Thus H has a countermodel in Łn iff (n−1)+ ∑
A∈Γi

(xA−(n−1))> ∑
A∈Δi

xA

has a solution over {0, . . . ,n−1}.
Theorem 7. If a Z-hypersequent is valid in Ł then it is derivable in ZŁ.
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Proof. From Theorem 3, by applying the logical rules of ZŁ to every Z-hypersequent
H we obtain a set S of atomic Z-hypersequents such that H is valid iff all elements of S
are valid. Let H = Γ1�m1 Δ1 | . . . | Γk �mk Δk be an atomic Z-hypersequent. We assume
that H is valid. Hence, the set SIH of inequalities is not feasible over [0,1]. Then,
by using linear programming [16], there exists a positive nonnegative combination of
the inequalities in SIH inconsistent over [0,1]. Formally, ∃α1, . . . ,αk ∈ N such that for
some i ∈ 1, . . . ,K we have αi > 0 and the inequality α1 ∗ (⊙Γ1)+ . . . + αk ∗ (⊙Γk) >
α1 ∗ (⊕Δ1)−α1 ∗m1 + . . . + αk ∗ (⊕ Δk)−αk ∗mk is inconsistent over [0,1]. We can
easily show, by using Definition 4, that the last inequality is inconsistent over [0,1]
iff the Z-hypersequent α1Γ1, . . . ,αkΓk �n α1Δ1, . . . ,αkΔk is valid in Ł, where n = α1 ∗
(m1 + 1) + . . . + αk ∗ (mk + 1)− 1 and for all i ∈ 1, . . . ,K, αiΓi (resp. α1Δi) denotes
the multiset obtained by the union of αi copies of the multiset Γi (resp. Δi). This Z-
hypersequent can be obtained from H by using the external weakening ([EW ]) and the
external contraction rules ([EC]).

Let Γ�n Δ be an atomic Z-hypersequent. We can easily prove that if there is a mul-
tiset of formulae Γ1, subset of Γ and Δ, then Γ�n Δ is valid iff Γ−Γ1 �n−n′ Δ−Γ1 is
valid, where n′ =| Γ1 | such that | S | denotes the number of elements in the multiset
S. Moreover, if l⊥ ⊆ Γ such that l⊥ denotes the multiset containing l copies of ⊥,
then Γ�n Δ is valid iff Γ− l⊥�n−l Δ is valid. From these results we obtain Γ�n Δ is
valid iff Γ = Γ1 ∪Γ2 ∪ l⊥ such that ⊥ /∈ Γ2; Δ = Δ1 ∪Δ2; Γ1 = Δ1; Γ2 ∩Δ2 = /0; and
| Γ2 |�| Γ | −n− 1.Then, α1Γ1, . . . ,αkΓk �n α1Δ1, . . . ,αkΔk such that n = α1 ∗ (m1 +
1)+ . . . +αk ∗(mk +1)−1 is derivable in ZŁ by using [Ax], [SR], [IWL], [IWR] and [⊥L].
If a Z-hypersequent is valid in Ł then it is derivable in ZŁ.

C Bounded Łukasiewicz Logic

Bounded Łukasiewicz logic ŁBn for n � 2 is defined as the intersection of Łk for k =
2, . . . ,n. A Hilbert axiomatic system for this logic consists of the same axioms and rules
than Ł with nA⊃(n−1)A. Calculi for ŁBn, called GŁBn [4], are obtained by adding to
the hypersequent calculus GŁ given in [12] the following rule:

G |
n−1

︷ ︸︸ ︷
Γ, . . .Γ,Γ′,⊥�

n−1
︷ ︸︸ ︷
Δ, . . . ,Δ,Δ′

G | Γ�Δ | Γ′ �Δ′
[nC]

It appears that this rule makes proof-search expensive because it duplicates the con-
texts Γ and Δ n-1 times. Here we introduce new calculi for Bounded Łukasiewicz logics
that are simpler than GŁBn. We call ZŁBn the calculus obtained from ZŁ′ by adding:

G | Γ1 �m1 Δ1 G | Γ2 �m1 Δ2

G | Γ1,Γ2 �m1+m2+1 Δ1,Δ2
[M]

G | Γ,A�m+1 Δ,A

G | Γ�m Δ
[GCUT ]

G | Γ�0 Δ,

n−1
︷ ︸︸ ︷
A, . . . ,A | Γ′,A�0 Δ′

[Axn]
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Theorem 12 (Soundness). The rules of ZŁBn are sound.

Proof. By Theorem 1 the logical rules are sound. The rules [M], [GCUT ], [SR], [S] and
[⊥L] are proved sound by similar arguments. Let us consider [AXn]. We suppose that

H = G | Γ�0 Δ,

n−1
︷ ︸︸ ︷
A, . . . ,A | Γ′,A�0 Δ′ has a countermodel. Thus, for k ∈ {2, . . . ,n} there

is a valuation [[·]] countermodel of H in Łk. Thus, there exists i ∈ {0, . . . ,k− 1} such
that [[A]] = i

k−1 . If [[A]] = 0 then Γ′,A�� � 0 � ��Δ′�� and we get a contradiction. Now,
if [[A]] = i

k−1 with i �= 0 then Γ�� � 1 � (n− 1) ∗ i
k−1 + ��Δ�� because n � k. This is a

contradiction.

Theorem 13 (Completeness). If A is valid in ŁBn then �0A is derivable in ZŁBn.

Proof. We have only to prove that (1) the axiom nA⊃ (n− 1)A is derivable in ZŁBn

and (2) the modus ponens rule is admissible in ZŁBn. Then we have:

�0(n−1)A | A�0
[SR]�0(n−1)A | (n−1)A,A�1 (n−1)A
[⊕L]

A⊕ ((n−1)A)�0 (n−1)A

and by using [⊕R] n-1 times, we obtain the axiom �0

n−1
︷ ︸︸ ︷
A, . . . ,A | A�0. A proof of (2) is

given by the following derivation:

A�0 B �0A
[M]

A�1 B,A
[GCUT ]

�0B

In next works we will study the cut-elimination problem.
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Abstract. We assume the existence of a function f that is computable
in polynomial time but its inverse function is not computable in random-
ized average-case polynomial time. The cryptographic setting is, however,
different: even for a weak one-way function, every possible adversary
should fail on a polynomial fraction of inputs. Nevertheless, we show
how to construct an infinitely-often one-way function based on f .

1 Introduction

A function is called weakly one-way if for some positive c every randomized
polynomial-time algorithm for inverting it fails with probability at least 1

nc .
One-way functions are one of the main cryptographic primitives. However, no
reasonable complexity assumption (such as, say, P �= NP or AvgP �= DistNP)
is known that would imply the existence of one-way functions.

We say that an algorithm with two parameters x (input) and δ (“give up”
probability) runs in a polynomial time on average, if its running time is bounded
by a polynomial in |x|δ and it “gives up” with probability at most δ (otherwise, it
gives the correct answer). This definition is given by Impagliazzo in his influential
survey paper on average-case complexity [Imp95]; it is equivalent to Levin’s
definition of average-case tractability [Lev86].

The three obstacles that prevent using such average-case complexity notions
in the cryptographic setting, are

1. A successful cryptographic adversary may err on a polynomial fraction of
inputs [Gol01, Definition 2.2.2], while in the average-case setting this is not
enough to solve a problem: if one spends exponential time on these inputs,
the average-case complexity is not polynomial [Lev86, BT06].

� Partially supported by RFBR grant 08-01-00640, the President of Russia grant
for leading scientific schools support NSh-4392.2008.1, and the Dynasty foundation
fellowship.

�� Partially supported by Russian Science Support Foundation, RFBR grant 08-01-
00640, and the President of Russia grant for leading scientific schools support NSh-
4392.2008.1.

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 208–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://logic.pdmi.ras.ru/~hirsch/
http://logic.pdmi.ras.ru/~dmitrits/


An Infinitely-Often One-Way Function 209

2. The (polynomial-time samplable) probability distribution for the crypto-
graphic setting is taken over function inputs, while in the average-case
setting it is taken over the outputs (i.e., the instances of the search prob-
lem of computing the inverse function): see, e.g., [Imp95, Lev03]. Note that
a polynomial-time samplable distribution on the outputs is not necessar-
ily dominated by the distribution induced by a polynomial-time samplable
distribution on the inputs.

3. To solve a problem in the average-case, one should solve it on all input
lengths, while in the cryptographic case a successful adversary is allowed
to solve it just on an infinite number of input lengths. We do not know if
this definitional discrepancy can be overcome, and follow the average-case
tradition in this work. Thus the function that we obtain is hard to invert
only on an infinite number of (rather than on almost all) input lengths.

In this paper we address item 1 of the above list: we prove that average-case
hardness of inverting a function implies cryptographic hardness of inverting a
related function on an infinite number of input lengths. Namely, we show how to
pad any function so that we can use any polynomial-time algorithm that inverts
the padded function with any noticeable probability of success for inverting the
padded function (as well as the original non-padded function) in polynomial time
on the average. The reduction essentially uses the fact that the two concepts use
a similarly defined set of input lengths, thus we do not resolve item 3. We do
not attempt to resolve item 2 either.

Our method uses the following simple idea of the proof of [Imp95, Proposition
3] of getting an average-case tractable algorithm out of an algorithm that works
on a fixed fraction of inputs (1 − 1

nk ). Bogdanov and Trevisan use this idea to
prove that the existence of an algorithm that fails on a 1

n fraction of inputs for
a version of the bounded halting problem implies the average-case easiness of
all NP languages with polynomial-time samplable distributions ([BT06, Propo-
sition 3.5]); the trick is: if one pads the input, the failure probability decreases.
We adapt this method for the problem of inverting a function. Instead of taking
a particular function we show how to modify any function to fit it. Note that a
straightforward approach of applying the argument to a (DistNP-hard) search
version of the bounded halting problem fails because for the (cryptographic)
problem of inverting a function one needs a (polynomial-time samplable) prob-
ability distribution on inputs of this function and not on its outputs.

Our main result is the following theorem:

Theorem 3. If there is a length-preserving polynomial-time computable func-
tion f that cannot be inverted in randomized average-case polynomial time on a
polynomial-time samplable distribution on its inputs, then there exists a length-
preserving function that is one-way for infinitely many input lengths.

Organization of the paper. In Sect. 2 we define rigorously the notions we use. In
Sect. 3 we prove the main result (Theorem 3).
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2 Preliminaries

2.1 Average-Case Complexity

In this subsection we define the core notions of the average-case complexity. We
basically follow [BT06] (technically, [BT06] allows distributions that are defined
not on every input length, but it does not make any difference for us).

Definition 1. An ensemble of distributions is a collection D = {Dn}∞n=1 where
Dn : {0, 1}n → IR is a distribution on inputs of length n (i.e.,

∑
a∈{0,1}n Dn(a) =

1).

Definition 2. A function f : {0, 1}∗ → 2{0,1}
∗

is called polynomial-time veri-
fiable if every string in its output is polynomially bounded in the length of the
input and there exists a polynomial-time computable function v such that

∀x, y ∈ {0, 1}∗ v(x, y) = 1 ⇐⇒ y ∈ f(x).

Definition 3. A distributed search problem (f,D) consists of a polynomial-time
verifiable function f : {0, 1}∗ → 2{0,1}

∗
and an ensemble of distributions D.

Remark 1. Bogdanov and Trevisan [BT06] consider search algorithms for NP
languages instead of formally defining distributed search problems, though these
approaches are obviously equivalent.

We follow Impagliazzo [Imp95] and Bogdanov and Trevisan [BT06] in defining
average-case polynomial-time algorithms as polynomial-time algorithms that are
allowed to “give up” (by outputting a special symbol ⊥).

Definition 4 (cf. [BT06, Definition 4.2]). A distributed search problem
(f,D) can be solved in polynomial time on the average if there exists an al-
gorithm A(x, δ) such that

– A runs in time polynomial in |x| and 1
δ for any x in the support of D and

any positive δ;
– if f(x) �= ∅, then A(x, δ) ∈ f(x) ∪ {⊥};
– Prx←Dn{A(x, δ) =⊥} ≤ δ.

Definition 5. Complexity class FAvgP consists of all distributed search prob-
lems that can be solved in polynomial time on the average.

Definition 6 (cf. [BT06, Definition 4.3]). A distributed search problem
(f,D) can be solved in randomized polynomial time on the average if there exists
a randomized algorithm A(x, δ) such that

– A runs in time polynomial in |x| and 1
δ for any x in the support of D and

any positive δ;
– if f(x) �= ∅, then Pr{A(x, δ) /∈ f(x) ∪ {⊥}} ≤ 1

4 where the probability is
taken over the random bits of A;
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– Prx←Dn{Pr{A(x, δ) = ⊥} ≥ 1
4} ≤ δ where the inner probability is taken over

the random bits of A.

Definition 7. Complexity class FAvgBPP consists of all distributed search
problems that can be solved in randomized polynomial time on the average.

The following definition of a (deterministic) reduction is a special case of ran-
domized heuristic search reduction [BT06, 5.1.1]. While FAvgBPP might not
be closed under these randomized reductions, it is closed under the deterministic
ones. In this paper we use only deterministic reductions.

Definition 8. Consider two distributed search problems (f,D) and (f ′, D′). We
say that (f,D) reduces to (f ′, D′), if there are polynomial-time computable func-
tions h, g such that the two following statements hold:

– f(x) �= ∅ =⇒ f ′(h(x)) �= ∅;
– y ∈ f ′(h(x)) =⇒ g(y) ∈ f(x) for any y and x with D|x|(x) > 0;
– there is a polynomial p(n) such that

∑

h(x)=x′, |x|=n
Dn(x) ≤ p(n) ·D′|x′|(x

′)

for any x′.

(The last condition is called the domination condition.) We now formally verify
that both FAvgP and FAvgBPP are closed under such reductions.

Lemma 1. If a problem (f,D) is reducible to a problem (f ′, D′), then (f ′, D′) ∈
FAvgP implies (f,D) ∈ FAvgP.

Proof. Let A′(y, δ) be an average-case polynomial-time algorithm for the prob-
lem (f ′, D′). Let q be a polynomial such that maxx∈{0,1}n |h(x)| ≤ q(n). Define
A(x, δ) = g(A′(h(x), δ

p(|x|)q(|x|))) (we assume g(⊥) =⊥). Clearly, the algorithm A

is polynomial in |x| and in 1
δ and does not output wrong answers when f(x) �= ∅.

The probability of the “give up” answer can be estimated as

Pr
x←Dn

{A(x, δ) =⊥} =
∑

A′(h(x), δ
p(n)q(n) )=⊥

Dn(x) ≤
∑

A′(y, δ
p(n)q(n) )=⊥

p(n)D′|y|(y)≤

p(n)q(n)
δ

p(n)q(n)
= δ.

�
Lemma 2. If a problem (f,D) is reducible to a problem (f ′, D′) then (f ′, D′) ∈
FAvgBPP implies (f,D) ∈ FAvgBPP.

Proof. The construction of the new algorithm A and the verification of the prob-
ability of the “give up” answer is similar to the deterministic case (Lemma 1):
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Pr
x←Dn

{Pr{A(x, δ) =⊥} ≥ 1
4
} =

∑

Pr{A′(h(x), δ
p(n)q(n) )=⊥}≥ 1

4

Dn(x)

≤
∑

Pr{A′(y, δ
p(n)q(n) )=⊥}≥ 1

4

p(n)D′|y|(y) ≤ p(n)q(n)
δ

p(n)q(n)
= δ.

The additional condition for randomized algorithms can be also easily verified:

Pr{A(x, δ) /∈ f(x) ∪ {⊥}} ≤ Pr{A′(h(x),
δ

p(n)q(n)
) /∈ f ′(h(x)) ∪ {⊥}} ≤ 1

4
.

�
2.2 Infinitely-Often One-Way Functions

In this section we define infinitely-often one-way functions1 that differ from
“standard” one-way functions in that they are hard only on an infinite num-
ber of (rather than on almost all) input lengths. In other words, in a contrast to,
e.g., [Gol01, Definition 2.2.1] we require the adversary to invert the function on
all sufficiently large input lengths to violate the one-wayness condition, while in
the “classical” definition it is enough to invert it on an infinite number of input
lengths.

Definition 9. A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is
a strong i.o.-one-way function if for any polynomial p(n) and any randomized
polynomial-time algorithm B,

∀N ∃n>N Pr{B(f(x)) ∈ f−1(f(x))} < 1
p(n)

where the probability is taken over x uniformly distributed on {0, 1}n and over
the random bits used by B.

We adjust the definition of weak one-way functions similarly (cf. [Gol01, Defini-
tion 2.2.2] for “ordinary” one-way functions).

Definition 10. A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is
a weak i.o.-one-way function if there exists polynomial p(n) such that for any
randomized polynomial-time algorithm B,

∀N ∃n>N Pr{B(f(x)) /∈ f−1(f(x))} > 1
p(n)

where the probability is taken over x uniformly distributed on {0, 1}n and over
the random bits used by B.

Theorem 1. The existence of weak i.o.-one-way functions implies the existence
of strong i.o.-one-way functions.

Proof. The proof follows the proof of [Gol01, Theorem 2.3.2] (for “ordinary”
one-way functions) literally. �
1 The term was suggested to us by an anonymous referee of ECCC.
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3 Main Result

3.1 Proof Strategy

We assume the existence of a length-preserving function f : {0, 1}∗ → {0, 1}∗
such that the search problem of inverting f on the distribution resulting from
the uniform2 distribution on the inputs of f cannot be solved in randomized
polynomial time on the average. Note that f is not necessarily weak i.o.-one-
way function: suppose that f is polynomial-time invertible on a set of probability
(1 − 1

2
√

n ), and invertible in time Ω(2n) on other inputs. In that case f may be
hard to invert in polynomial time on the average but it is not weakly i.o.-one-way.
We will show how to modify f so that it becomes weakly i.o.-one-way.

The main idea of the proof is to supply the original function with padding.
Namely, we define a new function fp(x, y) on pairs of strings that applies f
to its first argument and replaces the second argument by 1|y|. Note that the
probability of an input fp(x, y) does not depend on the length of padding (the
probability is exactly 2−|f(x)|). By the definition of a randomized average-case
polynomial-time algorithm it is required to solve much more instances at higher
lengths (the probability of error is a constant), and padding allows us to put the
instances of smaller lengths into higher lengths.

We show that the problem of inverting f is average-case reducible to the
problem of inverting fp. Indeed, to invert f on the string y it is sufficient to
invert fp on the pair (y, 1). To verify the domination condition we have to specify
an economic encoding of the pairs (to satisfy this condition, we are allowed to
increase the string length only by a logarithmic number). The details of the
encoding are given in the next section.

Suppose that there is a randomized polynomial-time algorithm B that inverts
fp with 1/n error: Pr{B(fp(z)) ∈ f−1

p (fp(z))} ≥ 1 − 1
n where the probability is

taken both by z and by the random choices of B. We now define a randomized
average-case polynomial-time algorithm A(z, δ) that inverts fp. The paradigm is:
increase the padding of the input z �→ z1


1
δ � and then useB. Since the probability

of the input does not depend on the length of padding, the probability of error of
A is at most 1

n+ 1
δ

≤ δ. Thus, inverting fp, and, by the reduction above, inverting
f , is randomized average-case tractable, which contradicts the assumption.

3.2 Proof Details

Throughout this section log denotes the binary logarithm. For a string x, we
denote the binary representation of its length |x| (as a string) by |x|2.

Definition 11. We say that a string x ∈ {0, 1}∗ is correct if

– x contains at least one occurrence of 0; let xk = 0 be the first such occurrence;
– |x| ≥ 2k − 1;
– the substring xk+1..x2k−1 is the binary representation of the number l such

that |x| ≥ 2k + l − 1.
2 It is later shown that one can assume any polynomial-time samplable distribution here.
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For a correct x, its main part is the substring x2k..x2k+l−1, and its padding is
the suffix x2k+l..x|x|.

Definition 12. Let π : {0, 1}∗ → {0, 1}∗ be a function that maps a string x
to the correct string π(x) with the main part x and the empty padding, i.e.,
π(x) = 1
log |x|�0|x|2x.

Remark 2. Note that π is injective.

Definition 13. Let f : {0, 1}∗ → {0, 1}∗ be a length-preserving function. We
then define a new (also length-preserving) function fp as follows: if there are y
and z such that x = 1
log |z|�0|z|2zy, then fp(x) = 1
log |z|�0|z|2f(z)1|y|, otherwise
fp(x) = x.

Definition 14. For any length-preserving function g and distribution D, the
distribution Dg is generated as the output of the function g whose inputs are
sampled according to D. In particular,

Ug(y) =
∑

g(x)=y

2−|x| = |g−1(y)| · 2−|y|.

Lemma 3. If x = 1
log |z|�0|z|2z1t, then Ufp(x) = |f−1(z)| · 2−|z|−2
log |z|�−1 =
Ufp(x1s) for any s ≥ 0. If x is a correct string whose padding contains zeroes,
then Ufp (x) = 0. If a string x is incorrect, then Ufp(x) = 2−|x|.

Proof. In the first case one has to sum up the probabilities for different original
paddings. The other two cases are trivial. �
Lemma 4. For any length-preserving function f , the problem (f−1, Uf) is re-
ducible to (f−1

p , Ufp).

Proof. To satisfy Definition 8, assume

h(x) = π(x),

g(y) =

{
x, if y = π(x),
y, otherwise,

p(n) = 2n3.

If f is invertible on x, then fp is invertible on π(x). If fp is invertible on π(x),
then g(f−1

p (π(x))) ∈ f−1(x). If f is not invertible on x, then trivially Uf(x) = 0.
Let n = |x|. Finally, if x′ = π(x), then by Lemma 3

Ufp(x′) = |f−1(x)| · 2−n−2
logn�−1 ≥ 1
2n3
· |f−1(x)|2−n =

1
p(n)

Ufn (x) =
1

p(n)

∑

π(y)=x′
Ufn (y).
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The last equality holds since π is injective. (If x′ cannot be represented as
π(x), the domination condition is trivially satisfied.) �
Theorem 2. Let f be a length-preserving polynomial-time computable function.
If there exists a randomized polynomial-time algorithm B such that for a constant
c > 0 and every integer n Pr

x←Ufp
n ,r←Us(n)

{B(x) ∈ f−1
p (x)} ≥ 1 − 1

nc , where r

is the string of random bits used by the algorithm B, s(n) is a polynomial, then
(f−1
p , U

fp
n ) ∈ FAvgBPP.

Proof. Since one can verify the answer of B, we assume that either B correctly
inverts fp or gives up. We also assume that when B returns an element of f−1

p (x),
it chooses one without zeroes in its padding.

We first prove that

Pr
x←Ufp

n

{

Pr
r←Us(n)

{B(x) /∈ f−1
p (x)} ≥ 1

4

}

≤ 4
nc
. (1)

Indeed, if this inequality is incorrect, then

Pr
x←Ufp

n ,r←Us(n)

{B(x) /∈ f−1
p (x)} =

∑

x∈{0,1}n

Ufp
n (x) · Pr

r←Us(n)

{B(x) /∈ f−1
p (x)} ≥

∑

x∈{0,1}n

Prr←Us(n){B(x)/∈f−1
p (x)}≥ 1

4

Ufp
n (x) · Pr

r←Us(n)

{B(x) /∈ f−1
p (x)} > 1

4
· 4
nc

=
1
nc
,

which contradicts the assumption about B.
The new algorithm A(x, δ) performs as follows. If x is an incorrect string,

then A(x, δ) = x. If x is a correct string with padding without zeros (note that
if the padding contains zeros, then Ufp(x) = 0), then we pad x and run B.
More precisely, let |x| = n, Δ = �(4

δ )1/c� , N = n + Δ. Define σ(x) = x1Δ. If
B(σ(x)) =⊥ then A(x, δ) =⊥, otherwise A(x, δ)1Δ = B(σ(x)), i.e., A strips Δ
trailing 1’s of B’s answer and outputs the result.

Then

Pr
x←Ufp

n

{

Pr
r←Us(N)

{A(x, δ) /∈ f−1
p (x)} ≥ 1

4

}

≤

Pr
x←Ufp

n

{

Pr
r←Us(N)

{B(σ(x)) /∈ f−1
p (σ(x))} ≥ 1

4

}
Lemma 3=

Pr
y←Ufp

N

{

∃x(x ∈ {0, 1}n ∧ y = σ(x)) ∧ Pr
r←Us(N)

{B(y) /∈ f−1
p (y)} ≥ 1

4

}

≤

Pr
y←Ufp

N

{

Pr
r←Us(N)

{B(y) /∈ f−1
p (y)} ≥ 1

4

}
(1)

≤ 4
N c

< δ.

�
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Corollary 1. Let f be a length-preserving polynomial-time computable function.
If the problem (f−1, Ufn ) /∈ FAvgBPP, then for any randomized polynomial-
time algorithm B and for any constant c > 0, there exist infinitely many n ∈ IN
such that Prx←Un,r←Us(n){B(fp(x)) ∈ f−1

p (fp(x))} < 1− 1
nc .

Proof. By Theorem 2, Lemma 4, and Lemma 2. �
Using Theorem 1 one gets

Corollary 2. If there exists a length-preserving polynomial-time computable
function f that cannot be inverted in randomized average-case polynomial time
(i.e., (f−1, Uf ) /∈ FAvgBPP), then there exists a length-preserving strong i.o.-
one-way function.

Corollary 2 formally requires that the function used in the assumption has a
uniform distribution on its inputs. However, it is easy to allow any other
polynomial-time samplable distribution on the inputs, which is formally proved
in the following theorem.

Theorem 3. If there is a length-preserving polynomial-time computable func-
tion f that cannot be inverted in randomized average-case polynomial time on a
polynomial-time samplable distribution D (i.e., (f−1, Df ) /∈ FAvgBPP), then
there exists a length-preserving strong i.o.-one-way function.

Proof. Let s : {0, 1}m(n) → {0, 1}n be a polynomial sampler for D, i.e., D =
Us. W.l.o.g. we may assume that m(n) ≥ n and m(n) is a strictly increasing
polynomial function. We define function fs as follows:

fs(x) =

{
f(s(x))1m(n)−n, if ∃n(m(n) = |x|),
x, otherwise.

We reduce (f−1, Df ) to ((fs)−1, Uf
s

). To satisfy Definition 8, assume

h(y) = y1m(n)−n,
g(x) = s(x),
p(n) = 1.

The domination condition is satisfied since Df (y) = Uf
s

(h(y)).
Since FAvgBPP is closed under reductions, we have ((fs)−1, Uf

s

) �∈
FAvgBPP. The theorem now follows from Corollary 2. �
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Abstract. Chaitin discovered that for each formal system T, there ex-
ists a constant c such that no sentence of the form K(x) > c is provable
in T, where K(x) is the Kolmogorov complexity of x. We call the mini-
mum such c the Chaitin characteristic constant of T, or cT. There have
been discussions about whether it represents the information content or
strength of T. Raatikainen tried to reveal the true source of cT, stat-
ing that it is determined by the smallest index of Turing machine which
does not halt but we cannot prove this fact in T. We call the index
the Raatikainen characteristic constant of T, denoted by rT. We show
that rT does not necessarily coincide with cT; for two arithmetical the-
ories T, T′ with a Π1-sentence provable in T′ but not in T, there is an
enumeration of the Turing machines such that rT < rT′ and cT = cT′ .

1 Introduction

Algorithmic information theory, originated by Andrey N. Kolmogorov,
R. Solomonoff and Gregory J. Chaitin, brought a formalization of the informa-
tion content of an individual object as Kolmogorov complexity. The Kolmogorov
complexity of a number x is defined as the smallest code of Turing machine which
outputs x. Chaitin[1] proved the incompleteness theorem in the following form:
for a sound, finitely-specified, formal system T and an enumeration of the Tur-
ing machines, there exists a bound c such that K(x) > c is not provable for any
number x in T. We call the minimum such c the Chaitin characteristic constant
of T, denoted by cT.

The received interpretation of this Chaitin’s result is that the Chaitin charac-
teristic constant cT measures the information content or strength of the formal
system T. Michiel van Lambalgen[2] criticized the received interpretation and
pointed out that cT is not determined only by the theory T, but also influenced
by the choice of enumeration of the Turing machines. Panu Raatikainen[3] re-
fined Lambalgen’s argument and showed that for any formal system T, there
exists an enumeration of the Turing machines which makes cT zero, or arbitrar-
ily large. In the same paper he tried to give a characterization of cT. Let rT
denote the smallest code of Turing machine which does not halt but we cannot
prove its non-halting property in T. He stated that cT is determined by rT. We
call rT the Raatikainen characteristic constant of T.
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The purpose of this paper is especially to show that cT does not coincide with
rT contrary to Raatikainen’s claim and to derive some mathematical properties
of cT and rT. First, we show that rT ≤ cT holds generally, but the converse
not. By rearranging the enumeration of the Turing machines, we can make the
difference between rT and cT arbitrarily large. Moreover, we prove that for two
arithmetical theories T, T′ with a Π1-sentence provable in T′ but not in T, there
is an enumeration of the Turing machines such that rT < rT′ and cT = cT′ .

Since these two characteristic constants are essentially what evaluate some
information on Turing machines given by T, the language of T is assumed to have
some fixed way to express outputs of Turing machines. However, it is possible
that a formal system with abundant axioms for outputs of Turing machines does
not prove any facts on Kolmogorov complexity, because those two ideas may be
expressed by different symbols which are not related by the axioms at all. For our
purpose we consider formal systems defining Kolmogorov complexity naturally
by Turing machines in this paper, while Raatikainen makes use of the recursion
theorem and the soundness to dispense with this assumption. We confine our
systems to first-order arithmetical theories, or formal systems in which first-
order arithmetics can be interpreted, and assume that they are arithmetically
sound, finitely-specified, and extending PA.

2 Arithmetizing Computability

Let PA denote the first-order Dedekind-Peano axioms, and LA its language. Note
that theories extending PA prove any Σ1-sentence which is true in N.

We consider Turing machines M of the following type. M has one semi-infinite
tape, with the left end as the start cell. In one movement, it changes the state,
writes a symbol on the tape, and makes the head move left or right, or stable.
We assume the tape symbols are 0, 1 and B, where B represents blank.

Definition 2.1. Any ordered pair (x, y) of natural numbers can be coded by
〈x, y〉 = 1

2 (x+ y)(x + y + 1) + x.
Tuples of natural numbers (x0, . . . , xn) can also be coded by a natural number

〈x0, x1, . . . , xn〉 defined inductively as follows for n ≥ 2:

〈x0, x1, . . . , xn〉 = 〈x0, 〈x1, . . . , xn〉〉.
For a = 〈x, y, n〉, we define Gödel β-function as the function defined by

β(a, i) = x mod (y(i+ 1) + 1) for each i < n.

n is called the length of a, denoted by |a|. We also write a[i] for β(a, i).

Lemma 2.2. Let f : N→ N be any definable function in PA. Then

PA � ∀n∃a (∀i < nβ(a, i) = f(i) ∧ |a| = n).

For any a0, . . . , an−1 ∈ N, a natural number a ∈ N is called a sequence number
for a0, . . . , an−1 if β(a, i) = ai for each natural number i < n.

Now we formulate the notion of Turing machine in PA.
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Definition 2.3. Suppose each cell in the tape is numbered 0, 1, 2, . . . from the
start cell to the right.

(1) We code a transition rule of a Turing machines M by a tuple of the form

〈q, s, q′, s′,m〉,
where m ∈ {L,R, S}. δ instructs that if the control is in state q over the cell
with number s, it transitions into the state q′ and writes s′ on the cell, and
moves or stay.

(2) A Turing machine M is coded by the sequence number

〈NQ, δ, q0, lF 〉,
where NQ is the number of states of M , q0 < NQ is the initial state of M ,
lF is a sequence number coding the set of final states, and δ is a sequence
number coding the set of transition rules.

(3) An instantaneous descriptions, or an ID, is coded by the sequence number

〈q, t, h〉
such that q < NQ is a code of a state, t is a sequence number coding the con-
tents of a contiguous finite sequence of cells covering every symbols appearing
on the tape other than B, and h is the position of the head.

(4) A process of M is coded by the sequence number of

〈ID0, ID1, . . . , IDl〉
of instantaneous descriptions such that the state of ID0 is the initial state,
and for each i < l, IDi+1 is obtained from IDi by δ.

Next, we define some formulae describing movements of Turing machines.
There is a Δ0-formula Ψ0(x, y) such that N |= Ψ0(p,m) if and only if p is a

number representing a process of the Turing machine coded by number m.
In order to describe the function represented by a Turing machine, we have

to describe by a logical formula the relation between a natural number and the
corresponding binary string representing it. The following are equivalent:

– x = a02n + a12n−1 + . . .+ an−12 + an;
– There is a sequence x0, x1, . . ., xn such that x0 = a0, xi = 2xi−1 + ai for
i = 1, . . . , n, and x = xn.

Therefore, there is a Σ1-formula bin(x, t) which says that “t is a sequence number
coding the binary representation of x.”

So we have a Σ1-formula Ψ1(m, y, z) which states that “z is an ID of the Turing
machine coded by m and the contents of the tape is the binary representation
of number y.

Using these formulae, we define a Σ1-formula Ψ2(p,m, x) which states that “p
is a number representing a valid sequence of ID of the Turing machine coded by
m with the binary representation of x in the tape at the beginning.
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Let ϕm the Turing machine coded by m and identify it with the computable
(partial) function defined by ϕm. Then the statement “ϕm(x) = y” or “ϕm(x) ↓
y” can be written by the formula

∃p (Ψ0(p,m) ∧ ∃n, t0, t2, i < p(n = |p| ∧ p[0] = 〈q0, t1, 0〉
∧p[n] = 〈q, t2, 0〉 for some q ∈ Fm

∧bin(x, t1) ∧ bin(y, t2))

Definition 2.4. For two partial functions f and g on N, f  g if and only if
for any x ∈ N,

f(x) is defined ⇐⇒ g(x) is defined and
f(x) = g(x) if both sides are defined.

We employ a fundamental result of recursion theory by Stephen C. Kleene.

Fact 2.5 (Kleene’s recursion theorem). If f is a total computable function,
then there effectively exists a constant c such that ϕf(c)  ϕc.
The statement “Calculation of ϕm(0) does not halt canonically”, or “ϕm(0)↑”,
can be represented by the formula

∀p (Ψ0(p,m) ∧ p[0] = 〈q0, 0, 0〉 → p is not terminating canonically.)

Any effective enumeration of the computable functions (or recursive func-
tions) can be represented by a universal Turing machine. Therefore, there is a
computable total bijective function f (f is a “compiler” function) such that if m
is a code (“program”) of a function for given universal Turing machine then the
partial function g coded by m with the given universal Turing machine satisfies
g  ϕf(m).

Conversely, any computable bijective function f , ϕf(m) (m = 0, 1, . . .) is an
effective enumeration of any computable function.

We write ϕfm for ϕf(m). We also write ϕfm(x) ↓ y if ϕf(m)(x) ↓ y, and ϕfm(x) ↑
if ϕf(m)(x) ↑. We will not specify the input if it is 0. Write ϕfm ↑ for ϕfm(0) ↑,
ϕfm ↓ y for ϕfm(0) ↓ y.

Note that any computable function is Σ1-definable in PA.

Definition 2.6. Let f be a Σ1-definable bijective function in PA.
Let CT (d,m) be a formula saying that d is a code of ID representing a canonical
termination of m, tval(d, x) a formula saying that d is a code of ID with a tape
value representing x.

We write ϕfm(x) ↓ y for the formula

∃p(Ψ2(p, f(m), x) ∧ ∃l (|p| = l ∧ CT (p[l],m) ∧ tval(p[l], y))).

We write ϕfm ↑ if the calculation of ϕfm does not terminate canonically. This
notion is equivalent to

∀p(Ψ2(p, f(m), x)→ ¬∃l (|p| = l ∧ CT (p[l],m) ∧ tval(p[l], y))).
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For a natural number n, the Kolmogorov complexity of n with respect to f ,
denoted by Kf (n), is the smallest natural number k such that ϕfk = n. We can
define Kf(x) = y by “y is the smallest m such that ∃pΨ2(p, f(m), 0, x).”

3 Characteristic Constants

Definition 3.1. Let T be a formal system extending PA. We define two con-
stants cf,T and rf,T as follows:

cf,T is the smallest number k such that for any natural number n, T �

Kf(n) > k.
rf,T is the smallest number e such that ϕfe ↑ and T � ϕfe ↑.

Theorem 3.2. cf,T and rf,T exist for any sound, finitely-specified formal sys-
tem T and a definable permutation f in PA.

Proof. cf,T exists, for there is a natural number c such that T � Kf (x) > c.
Define a total computable function i as follows. For each k, we have a Turing
machine which searches the proof of Kf (x) > k from T for some x and, if found,
halts with output x. We can effectively obtain the index of this machine, i(k).
By recursion theorem, we can effectively find an index c such that ϕc  ϕi(c). If
T � Kf (x) > c for some natural number x, ϕi(c)  ϕc ↓ x, and hence Kf(x) ≤ c.
This contradicts the assumption of soundness of T.

Next, we show that rf,T exists. Consider a Turing machine ϕi(k) which halts
if T � ϕk ↑. By recursion theorem we have c such that ϕi(c)  ϕc. ϕc does not
halt, since if ϕc halts, ϕc does not halt by the soundness of T. Hence, ϕc ↑. If
T � ϕc ↑, then ϕi(c), thus, ϕc halts. Contradiction. We have T � ϕc ↑.
Next we argue the relation between cf,T and rf,T. We first see rf,T ≤ cf,T.

Lemma 3.3. Let T be any formal system extending PA, and f any Σ1-definable
permutation, either T � ϕfi ↑ or T � ϕfi ↓ holds for any i < rf,T.

Proof. Since T proves all Σ1-sentences true in N, if ϕfi ↓ n,T � ϕfi ↓ n. If ϕfi ↑,
by the minimality rf,T, T � ϕfi ↑.
Theorem 3.4. For any formal system T extending PA and any definable per-
mutation f , rf,T ≤ cf,T.

Proof. Suppose rf,T > cf,T. Let n �∈ {ϕf0 (0), . . . , ϕfcT(0)} and i ≤ cf,T. If T �
ϕfi ↓ k, T � ¬ϕfi ↓ n. Otherwise, by lemma 3.3, T � ϕfi ↑, T � ¬ϕfi ↓ n. Then
T � Kf (n) > cf,T, a contradiction to the definition of cT.

Remark 3.5. For any definable permutation σ : N → N in PA, PA � ϕf◦σm 
ϕfσ(m).

However, rT ≥ cT does not necessarily hold. In fact, for a given formal system
T we can enumerate the Turing machines so that rT < cT.
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Lemma 3.6. Let f : N → N be a bijective function Σ1-definable in PA. There
is a g : N→ N Σ1-definable in PA such that for any formal system T extending
PA,

(1) T � ϕfm ↑ if and only if T � ϕfg(m) ↑, and

(2) T � ¬(ϕfg(m) ↓ 0).

Proof. We add transition rules to make the machine write 1 on the tape before
termination. Let m be a number and M = (Q,Γ, δ, q0, F ) be the Turing machine
coded by f(m). Let M ′ = (Q ∪ {qf}, Γ, δ′, q0, {qf}) be a Turing machine such
that qf is a new state, and

δ′ = δ ∪ {(q, b, qf , 1, S) : b ∈ {0, 1, B}, q ∈ F}.
Let m′ be the code of M ′ and let g(m) = f−1(m′).
We claim that g is the desired function.
First, we show (2), i.e., PA � ¬(ϕfg(m) ↓ 0). In case ϕfg(m) ↑, then ¬(ϕfg(m) ↓ 0).

Otherwise, ϕfg(m) ↓ y for some y. But y �= 0 by the construction of M ′.
Now, we show (1). Suppose T � ϕfm ↑. Then T � ∀p(Ψ2(p, f(m), 0) →

¬∃l (|p| = l ∧ CT (p[l],m) ∧ tval(p[l], y))).
The following argument can be done in T. Let p′ be any natural number

and assume that Ψ2(p′, f(g(m)), x). Suppose that the last ID in p′ has final
state of M ′. Truncate the last ID in p′ and name it p. By the definition of
M ′, p represents a valid calculation of “f(m)” which is canonically terminating.
Therefore, we have ϕf(m) ↓, a contradiction. Hence, the last ID in p′ does not
have a final state of M ′.

Conversely, suppose that

T � ∀p′(Ψ2(p′,m′, 0)→ ¬∃l (|p′| = l ∧ CT (p′[l],m′) ∧ tval(p′[l], y))).

where m′ = f(g(m)) is a code of the Turing machine M ′ described above.
Let p be any natural number and assume that Ψ2(p, f(m), x). If p represents a

valid calculation ofM terminating canonically, we can add an ID ofM ′ to p to get
a code p′ of a valid calculation of M ′ terminating canonically. This contradicts
with the assumption. Therefore, p does not represent a valid calculation of M
terminating canonically.

Theorem 3.7. Let T be any formal system extending PA. Let f : N → N be
a bijective function Σ1-definable in PA. Then there is a permutation σ on N

definable in PA such that

rf,T = rf◦σ,T < cf◦σ,T.

Moreover, the difference between rf◦σ,T and cf◦σ,T can be arbitrarily large.

Proof. Let n be any natural number. We show that there is a permutation σ on
N such that

rf,T = rf◦σ,T < cf◦σ,T
and the difference of rf◦σ,T and cf◦σ,T is greater than n.
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Let g : N→ N be the function obtained in Lemma 3.6 with respect to f . Let
σ be a permutation on N such that σ(i) = g(i) for i ≤ rf,T + n. By Lemma 3.3,
we have T � ϕf◦σi ↓ or T � ϕf◦σi ↑ for each i < rf,T. But T � ¬ϕf◦σi ↓ 0 for
i ≤ rf,T + n. Therefore, T � Kf◦σ(0) > rf,T + n. Hence, rf,T + n < cf◦σ,T.

It is well-known that the truth definition of a Σn-formulas can be expressed by
a Σn+1-formula. With a similar proof to this fact, we can show the following
lemma:

Lemma 3.8. Let ψ(x) be a Δ0-formula in LA. Then there is a code m0 of a
Turing machine such that

PA � ψ(x)↔ ϕm0(x) ↓ 1,
PA � ¬ψ(x)↔ ϕm0(x) ↓ 0.

Lemma 3.9. Let ψ(x) be any Δ0-formula in LA. Then there is a code m of a
Turing machine such that

PA � ∀xψ(x)↔ ϕm ↑ .

Proof. Let ϕm0 be a Turing machine we can get for ψ(x) by Lemma 3.8.
Let ϕm be a Turing machine corresponding to the following C program:

while (ψ(x)) x++;

We explain ϕm more accurately. The initial state of ϕm is q0. ϕm “saves” the
value of x so that we can retrieve it later. Then ϕm evaluates ψ(x) with the rules
of ϕm0 . If the value is 0, then it enters the unique final state qf and halts. If the
value is 1, then it retrieves the value of x to an initial segment of the tape. Then
it increments the value of x by 1 and enters the initial state q0.

Now, we show the lemma. We are working in PA.
Suppose ∀xψ(x). We can show a formula in LA expressing the following:

Claim 3.10 For all n, there is a process of ϕm with input 0 such that the final
ID has the initial state and the tape content is n.

It is clear that the process with single ID 〈q0, bin(0), 0〉 is the process for n = 0.
Assume n ≥ 1. By induction hypothesis, there is a process of ϕm with input

0 such that the final ID is 〈q0, bin(n − 1), 0〉. Since ∀xψ(x), we have a process
pn for ϕm0(n− 1) ↓ 1. We can concatenate process pn and a process to perform
x + + to the process already obtained. We have a process with the final ID
〈q0, bin(n), 0〉. Therefore, we have the claim, and thus, ϕm ↑.

For the converse, suppose that ϕm ↑. We can prove a formula in LA expressing
the following claim:

Claim 3.11 For all n, there is a process of ϕm with input 0 such that the final
ID is 〈q0, bin(n), 0〉, and if n > 0 then ψ(n− 1).

We prove this by induction on n. It is obvious for n = 0.



On Characteristic Constants of Theories 225

Suppose n ≥ 1. By the induction hypothesis, there is a process of ϕm with
input 0 such that the final ID is 〈q0, bin(n− 1), 0〉.

By Lemma 3.8, there is a process for ϕm0(n − 1) ↓ 0 or ϕm0(n − 1) ↓ 1. In
case ϕm0(n − 1) ↓ 0, the control enters qf and we have ϕm ↓. This contradicts
our hypothesis. Therefore, there is a process for ϕm0(n− 1) ↓ 1. Hence, we have
ψ(n− 1) by Lemma 3.8. Now, we can increment the tape value x from n− 1 to
n. Therefore, we have the claim.

By the claim, we have ∀xψ(x).

By Lemma 3.9, we have the following theorem.

Theorem 3.12. Let T and T′ be sound, finitely-specified, formal systems ex-
tending PA such that T < T′. Then the following are equivalent:

(1) There is a Π1-sentence θ such that T′ � θ but T � θ.
(2) There is an enumeration of the Turing machines such that rT < rT′ .

Furthermore, we show that for two theories with a Π1-gap, there is an enumer-
ation of the Turing machines which makes them different in the Raatikainen
constant but the same in the Chaitin characteristic constant.

Theorem 3.13. Let T,T′ be sound, finitely-specified, formal systems extend-
ing PA with a Π1-sentence provable in T′ but not in T. Then there exists an
enumeration of the Turing machines such that cT = cT′ and rT < rT′ .

Proof. By Lemma 3.6 and Theorem 3.12, we can assume that T � ϕm ↑, T′ �
ϕm ↑, and T � ¬ϕm ↓ 0. By the same argument in Theorem 3.2, we take a c
such that ϕc ↑ and T′ � ¬ϕc ↓ n. Let f be a function such that f(m) = 0,
f(c) = 1 and f(x) = x otherwise. Since T � ϕf0 ↑, rfT = 0. By T′ � ϕf0 ↑ and
T′ � ϕf1 ↑, we have rf,T′ = 1. Because T � Kf(0) > 0 and T ′ � Kf(n) > 1 for
all n, cf,T = cf,T′ = 1.

Remark 3.14. In the theorem above, we can make cT arbitrarily large as in
Theorem 3.7.
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Abstract. We present general methods for proving lower bounds on
the query complexity of nonadaptive quantum algorithms. Our results
are based on the adversary method of Ambainis.

1 Introduction

In this paper we present general methods for proving lower bounds on the query
complexity of nonadaptive quantum algorithms. A nonadaptive algorithm makes
all its queries simultaneously. By contrast, an unrestricted (adaptive) algorithm
may choose its next query based on the results of previous queries. In classical
computing, classes of problems for which adaptivity does not help have been
identified [4, 10] and it is known that this question is connected to a longstand-
ing open problem [15] (see [10] for a more extensive discussion). In quantum
computing, the study of nonadaptive algorithms seems especially relevant since
some of the best known quantum algorithms (namely, Simon’s algorithms and
some other hidden subgroup algorithms) are nonadaptive. This is nevertheless a
rather understudied subject in quantum computing.

The paper that is most closely related to the present work is [14] (and [8] is
another related paper). In [14] the authors use an “algorithmic argument” (this is
a kind of Kolmogorov argument) to give lower bounds on the nonadaptive quan-
tum query complexity of ordered search, and of generalizations of this problem.
The model of computation that they consider is less general than ours (more on
this in section 2).

The two methods that have proved most successful in the quest for quan-
tum lower bounds are the polynomial method (see for instance [5,2,11,12]) and
the adversary method of Ambainis. It is not clear how the polynomial method
might take the nonadaptivity of algorithms into account. Our results are there-
fore based on the adversary method, in its weighted version [3]. We provide
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two general lower bounds which yield optimal results for a number of problems:
search in an ordered or unordered list, element distinctness, graph connectiv-
ity or bipartiteness. To obtain our first lower bound we treat the list of queries
performed by a nonadaptive algorithm as one single “super query”. We can then
apply the adversary method to this 1-query algorithm. Interestingly, the lower
bound that we obtain is very closely related to the lower bounds on adaptive
probabilistic query complexity due to Aaronson [1], and to Laplante and Mag-
niez [13]. Our second lower bound requires a detour through the so-called min-
imax (dual) method and is based on the fact that in a nonadaptive algorithm,
the probability of performing any given query is independent of the input.

2 Definition of the Model

In the black box model, an algorithm accesses its input by querying a function
x (the black box) from a finite set Γ to a (usually finite) set Σ. At the end of
the computation, the algorithm decides to accept or reject x, or more generally
produces an output in a (usually finite) set S′. The goal of the algorithm is
therefore to compute a (partial) function F : S → S′, where S = ΣΓ is the
set of black boxes. For example, in the Unordered Search problem Γ = [N ] =
{1, . . . , N}, Σ = {0, 1} and F is the OR function: F (x) =

∨

1≤i≤N
x(i).

Our second example is Ordered Search. The sets Γ and Σ are as in the first
example, but F is now a partial function: we assume that the black box satisfies
the promise that there exists an index i such that x(j) = 1 for all j ≥ i, and
x(j) = 0 for all j < i. Given such an x, the algorithm tries to compute F (x) = i.

A quantum algorithm A that makes T queries can be formally described as a
tuple (U0, . . . , UT ), where each Ui is a unitary operator. For x ∈ S we define the
unitary operatorOx (the “call to the black box”) by Ox|i〉|ϕ〉|ψ〉 = |i〉|ϕ⊕x(i)〉|ψ〉.
The algorithmA computes the final state UTOxUT−1 . . . U1OxU0|0〉 and makes a
measurement of some of its qubits. The result of this measure is by definition the
outcome of the computation of A on input x. For a given ε, the query complexity
of a function F , denoted Q2,ε, is the smallest query complexity of a quantum
algorithm computing F with probability of error at most ε.

In the sequel, the quantum algorithms as described above will also be called
adadaptive to distinguish them from nonadaptive quantum algorithms. Such an
algorithm performs all its queries at the same time. A nonadaptive black-box
quantum algorithm A that makes T queries can therefore be defined by a pair
(U, V ) of unitary operators. For x ∈ S we define the unitary operator OTx by

OTx |i1, . . . , iT 〉|ϕ1, . . . , ϕT 〉|ψ〉 = |i1, . . . , iT 〉|ϕ1 ⊕ x(i1), . . . , ϕT ⊕ x(iT )〉|ψ〉.

The algorithm A computes the final state V OTx U |0〉 and makes a measure-
ment of some of its qubits. As in the adaptive case, the result of this mea-
sure is by definition the outcome of the computation of A on input x. For a
given ε, the nonadaptive query complexity of a function F , denoted Qna2,ε, is
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the smallest query complexity of a nonadaptive quantum algorithm comput-
ing F with probability of error at most ε. Our model is more general than
the model of [14]. In that model, the |ϕ〉 register must remain set to 0 after
application of U . After application of OTx , the content of this register is there-
fore equal to |x(i1), . . . , x(iT )〉 rather than |ϕ1 ⊕ x(i1), . . . , ϕT ⊕ x(iT )〉.

It is easy to verify that for every nonadaptive quantum algorithm A of query
complexity T there is an adaptive quantum algorithm A′ that makes the same
number of queries and computes the same function, so that Q2,ε ≤ Qna2,ε. In-
deed, consider for every k ∈ [T ] the unitary operator Ak which maps the state
|i1, . . . , iT 〉|ϕ1, . . . , ϕT 〉 to

|ik〉|ϕk〉|i1, . . . , ik−1, ik+1, . . . iT 〉|ϕ1, . . . , ϕk−1, ϕk+1, . . . , ϕT 〉.

If the nonadaptive algorithmA is defined by the pair of unitary operators (U, V ),
then the adaptive algorithm A′ defined by the tuple of unitary operators

(U0, . . . , UT ) = (A1U,A2A
−1
1 , . . . , ATA

T−1
T−1, V A

−1
T )

computes the same function.

3 A Direct Method

3.1 Lower Bound Theorem and Applications

The main result of this section is Theorem 3. It yields an optimal Ω(N) lower
bound on the nonadaptive quantum query complexity of Unordered Search and
Element Distinctness. First we recall the weighted adversary method of Ambainis
and some related definitions. The constant Cε = (1−2

√
ε(1− ε))/2 will be used

throughout the paper.

Definition 1. The function w : S2 → R+ is a valid weight function if every
pair (x, y) ∈ S2 is assigned a non-negative weight w(x, y) = w(y, x) that satisfies
w(x, y) = 0 whenever F (x) = F (y). We then define for all x ∈ S and i ∈ Γ :
wt(x) =

∑
y w(x, y) and v(x, i) =

∑
y: x(i) �=y(i) w(x, y).

Definition 2. The pair (w, w′) is a valid weight scheme if:

– Every pair (x, y) ∈ S2 is assigned a non-negative weight w(x, y) = w(y, x)
that satisfies w(x, y) = 0 whenever F (x) = F (y).

– Every triple (x, y, i) ∈ S2 × Γ is assigned a non-negative weight w′(x, y, i)
that satisfies w′(x, y, i) = 0 whenever x(i) = y(i) or F (x) = F (y), and
w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i with x(i) �= y(i).

We then define for all x ∈ S and i ∈ Γ wt(x) =
∑
y w(x, y) and v(x, i) =∑

y w
′(x, y, i).

Of course these definitions are relative to the partial function F .
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Remark 1. Let w be a valid weight function and define w′ such that if x(i) �= y(i)
then w′(x, y, i) = w(x, y) and w′(x, y, i) = 0 otherwise. Then (w,w′) is a valid
weight scheme and the functions wt and v defined for w in Definition 1 are
exactly those defined for (w,w′) in Definition 2.

Theorem 1 (weighted adversary method of Ambainis [3]).Given a prob-
ability of error ε and a partial function F , the quantum query complexity Q2,ε(F )
of F as defined in section 2 satisfies:

Q2,ε(F ) ≥ Cε max
(w,w′) valid

min
x,y,i

w(x,y)>0
x(i) �=y(i)

√
wt(x)wt(y)
v(x, i)v(y, i)

.

A probabilistic version of this lower bound theorem was obtained by Aaronson [1]
and by Laplante and Magniez [13].

Theorem 2. Fix the probability of error to ε = 1/3. The probabilistic query
complexity P2(F ) of F satisfies the lower bound P2(F ) = Ω(LP (F )), where

LP (F ) = max
w

min
x,y,i

w(x,y)>0
x(i) �=y(i)

max
(
wt(x)
v(x, i)

,
wt(y)
v(y, i)

)

.

Here w ranges over the set of valid weight functions.

We now state the main result of this section.

Theorem 3 (nonadaptive quantum lower bound, direct method). The
nonadaptive query complexity Qna2,ε(F ) of F satisfies the lower bound Qna2,ε(F ) ≥
C2
εL

na
Q (F ), where

LnaQ (F ) = max
w

max
s∈S′

min
x,i

F (x)=s

wt(x)
v(x, i)

.

Here w ranges over the set of valid weight functions.

The following theorem, which is an unweighted adversary method for nonadap-
tive algorithm, is a consequence of Theorem 3.

Theorem 4. Let F : ΣΓ → {0; 1}, X ⊆ F−1(0), Y ⊆ F−1(1) and let R ⊂
X × Y be a relation such that:

– for every x ∈ X there are at least m elements y ∈ Y such that (x, y) ∈ R,
– for every y ∈ Y there are at least m′ elements x ∈ X such that (x, y) ∈ R,
– for every x ∈ X and every i ∈ Γ there are at most l elements y ∈ Y such

that (x, y) ∈ R and x(i) �= y(i),
– for every y ∈ X and every i ∈ Γ there are at most l′ elements x ∈ X such

that (x, y) ∈ R and x(i) �= y(i).

Then Qna2,ε(F ) ≥ C2
ε max(

m

l
,
m′

l′
).
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Proof. As in [3] and [13] we set w(x, y) = w(y, x) = 1 for all (x, y) ∈ R. Then
wt(x) ≥ m for all x ∈ A, wt(y) ≥ m′ for all y ∈ B, v(x, i) ≤ l and v(y, i) ≤ l′. �

For the Unordered Search problem defined in Section 2 we have m = N and
l = l′ = m′ = 1. Theorem 4 therefore yields an optimal Ω(N) lower bound. The
same bound can be obtained for the Element Distinctness problem. Here the set
X of negative instances is made up of all one-to-one functions x : [N ] → [N ]
and Y contains the functions y : [N ]→ [N ] that are not one-to-one. We consider
the relation R such that (x, y) ∈ R if and only if there is a unique i such that
x(i) �= y(i). Then m = 2, l = 1,m′ = N(N − 1) and l′ = N − 1.

As pointed out in [13], the Ω(max(m/l,m′/l′)) lower bound from Theorem 4
is also a lower bound on P2(F ). There is a further connection:

Proposition 1. For any function F we have LP (F ) ≥ LnaQ (F ). That is, ignor-
ing constant factors, the lower bound on P2(F ) given by Theorem 2 is at least
as high as the lower bound on Qna2,ε(F ) given by Theorem 3.

Proof. Pick a weight function wQ which is optimal for the “direct method” of
Theorem 3. That is, wQ achieves the lower bound LnaQ (F ) defined in this theorem.
Let sQ be the corresponding optimal choice for s ∈ S′. We need to design a weight
function wP which will show that LP (F ) ≥ LnaQ (F ). One can simply define wP
by: wP (x, y) = wQ(x, y) if F (x) = sQ or F (y) = sQ; wP (x, y) = 0 otherwise.
Indeed, for any i and any pair (x, y) such that wP (x, y) > 0 we have F (x) = sQ
or F (y) = sQ, so that max(wt(x)/v(x, i), wt(y)/v(y, i)) ≥ LnaQ (F ). �

The nonadaptive quantum lower bound from Theorem 3 is therefore rather closely
connected to adaptive probabilistic lower bounds: it is sandwiched between the
weighted lower bound of Theorem 2 and its unweighted max(m/l,m′/l′) version.
Proposition 1 also implies that Theorem 3 can at best prove an Ω(logN) lower
bound on the nonadaptive quantum complexity of Ordered Search. Indeed, by
binary search the adaptive probabilistic complexity of this problem isO(logN). In
section 4 we shall see that there is in fact a Ω(N) lower bound on the nonadaptive
quantum complexity of this problem.

Remark 2. The connection between nonadaptive quantum complexity and adap-
tive probabilistic complexity that we have pointed out in the paragraph above
is only a connection between the lower bounds on these quantities. Indeed, there
are problems with a high probabilistic query complexity and a low nonadaptive
quantum query complexity (for instance, Simon’s problem [16,10]). Conversely,
there are problems with a low probabilistic query complexity and a high non-
adaptive quantum query complexity (for instance, Ordered Search).

3.2 Proof of Theorem 3

As mentioned in the introduction, we will treat the tuple (i1, . . . , ik) of queries
made by a nonadaptive algorithm as a single “super query” made by an ordinary
quantum algorithm (incidentally, this method could be used to obtain lower
bounds on quantum algorithm that make several rounds of parallel queries as
in [8]). This motivates the following definition.
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Definition 3. Let Σ, Γ and S be as in section 2. Given an integer k ≥ 2, we
define:

– kΣ = Σk, kΓ = Γ k and kS =
(
Σk

)Γk

.
– To the black box x ∈ S we associate the “super box” kx ∈ kS such that if
I = (i1, . . . , ik) ∈ Γ k then kx(I) = (x(i1), . . . , x(ik)).

– kF (kx) = F (x).
– If w is a weight function for F we define a weight function W for kF by
W (kx,k y) = w(x, y).

Assume for instance that Σ = {0; 1}, Γ = [3], k = 2, and that x is defined by:
x(1) = 0, x(2) = 1 and x(3) = 0. Then we have 2x(1, 1) = (0, 0), 2x(1, 2) = (0, 1),
2x(1, 3) = (0, 0) . . .

Lemma 1. If w is a valid weight function for F then W is a valid weight func-
tion for kF and the minimal number of queries of a quantum algorithm comput-
ing kF with error probability ε satisfies:

Q2,ε(kF ) ≥ Cε · min
kx,ky,I

W (kx,ky)>0
kx(I) �=ky(I)

√
WT (kx)WT (ky)
V (kx, I)V (ky, I)

.

Proof. Every pair (x, y) ∈ S2 is assigned a non-negative weight W (kx,k y) =
W (ky,k x) = w(x, y) = w(y, x) that satisfies W (kx,k y) = 0 whenever F (x) =
F (y). Thus we can apply Theorem 1 and we obtain the announced lower bound.

�

Lemma 2. Let x be a black-box and w a weight function. For any integer k and
any tuple I = (i1, . . . , ik) we have

WT (kx)
V (kx, I)

≥ 1
k

min
j∈[k]

wt(x)
v(x, ij)

.

Proof. Let m = minj∈[k]
wt(x)
v(x,ij)

. We have WT (kx) = wt(x) and:

V (kx, I) =
∑

ky:kx(i) �=ky(i)

W (kx,k y)

≤
∑

y:x(i1) �=y(i1)
w(x, y) + · · ·+

∑

y:x(ik) �=y(ik)

w(x, y)

= v(x, i1) + · · ·+ v(x, ik) ≤ kmax
j∈[k]

v(x, ij). �

Lemma 3. If w is a valid weight function:

Qna2,ε(F ) ≥ C2
ε min

x,y
F (x) �=F (y)

max
(

min
i

wt(x)
v(x, i)

,min
i

wt(y)
v(y, i)

)

.
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Proof. Let w be an arbitrary valid weight function and k be an integer such that

k < C2
ε min

x,y
F (x) �=F (y)

max
(

min
i

wt(x)
v(x, i)

,min
i

wt(y)
v(y, i)

)

.

We show that an algorithm computing kF with probability of error ≤ ε must
make strictly more one than query to the “super box” kx. This will prove that
for every such k we have Qna2,ε(F ) > k and thus our result.

For every x and I we have

WT (kx)
V (kx, I)

≥ 1

and thus by lemma 2 for every x, y and I = (i1, . . . , ik):

WT (kx)
V (kx, I)

WT (ky)
V (kx, I)

= min
(
WT (kx)
V (kx, I)

,
WT (ky)
V (kx, I)

)

max
(
WT (kx)
V (kx, I)

,
WT (ky)
V (kx, I)

)

≥ max
(
WT (kx)
V (kx, I)

,
WT (ky)
V (kx, I)

)

≥ 1
k

max
(

min
j∈[k]

wt(x)
v(x, ij)

,min
l∈[k]

wt(y)
v(x, il)

)

.

In order to apply Lemma 1 we observe that:

min
kx,ky,I

W (kx,ky)>0
kx(I) �=ky(I)

WT (kx)WT (ky)
V (kx, I)V (ky, I)

≥ 1
k

min
x,y,i1,...,ik
w(x,y)>0

∃m x(im) �=y(im)

max
(

min
j∈[k]

wt(x)
v(x, ij)

,min
l∈[k]

wt(y)
v(x, il)

)

≥ 1
k

min
x,y

F (x) �=F (y)

max
(

min
i

wt(x)
v(x, i)

,min
i

wt(y)
v(x, i)

)

By hypothesis on k, this expression is greater than 1/C2
ε . Thus according to

Lemma 1 we have Q2,ε(kF ) > 1, and Qna2,ε(F ) > k. �

We can now complete the proof of Theorem 3. Suppose without loss of generality
that F (S) = [m] and define for every l ∈ [m]:

al = C2
ε min

x,i
F (x)=l

wt(x)
v(x, i)

.

Suppose also without loss of generality that a1 ≤ · · · ≤ am. It follows imme-
diately from the definition that

a2 = C2
ε min

x,y
F (x) �=F (y)

max
(

min
i

wt(x)
v(x, i)

,min
i

wt(y)
v(x, i)

)

,
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and
am = C2

ε max
l∈F (S)

min
x,i

F (x)=l

wt(x)
v(x, i)

.

By Lemma 3 we have Qna2,ε(F ) ≥ a2, but we would like to show that Qna2,ε(F ) ≥
am. We proceed by reduction from the case when there are only two classes (i.e.,
m = 2). Let G be defined by

G(1) = · · · = G(m− 1) = 1

and G(m) = m. Applying Lemma 3 to GoF , we obtain that Qna2,ε(GoF ) ≥ am.
But because the function GoF is obviously easier to compute than F , we have
Qna2,ε(F ) ≥ Qna2,ε(GoF ) and thus Qna2,ε(F ) ≥ am as desired.

4 From the Dual to the Primal

Our starting point in this section is the minimax method of Laplante and Mag-
niez [13, 17] as stated in [9]:

Theorem 5. Let p : S×Σ → R
+ be the set of |S| probability distributions such

that px(i) is the average probability of querying i on input x, where the average is
taken over the whole computation of an algorithm A. Then the query complexity
of A is greater or equal to:

Cε max
x,y

F (x) �=F (y)

1
∑

i
x(i) �=y(i)

√
px(i)py(i)

.

Theorem 5 is the basis for the following lower bound theorem. It can be shown
that up to constant factors, the lower bound given by Theorem 6 is always as
good as the lower bound given by Theorem 3.

Theorem 6 (nonadaptive quantum lower bound, primal-dual method ).
Let F : S → S′ be a partial function, where as usual S = ΣΓ is the set of black-
box functions. Let

DL(F ) = min
p

max
x,y

F (x) �=F (y)

1
∑

i
x(i) �=y(i)

p(i)

and

PL(F ) = max
w

∑

x,y
w(x, y)

max
i

∑

x,y
xi �=yi

w(x, y)

where the min in the first formula is taken over all probability distributions p over
Γ , and the max in the second formula is taken over all valid weight functions w.
Then DL(F ) = PL(F ) and we have the following nonadaptive query complexity
lower bound:
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Q2,ε(F ) ≥ CεDL(F ) = CεPL(F ).

Proof. We first show that Q2,ε(F ) ≥ CεDL(F ). Let A be a nonadaptive quan-
tum algorithm for F . Since A is nonadaptive, the probability px(i) of querying
i on input x is independent of x. We denote it by p(i). Theorem 5 shows that
the query complexity of A is greater or equal to

Cε max
x,y

F (x) �=F (y)

1
∑

i
x(i) �=y(i)

p(i)
.

The lower bound Q2,ε(F ) ≥ CεDL(F ) follows by minimizing over p.
It remains to show that DL(F ) = PL(F ). Let

L(F ) = min
p

max
x,y

F (x) �=F (y)

∑

i
x(i)=y(i)

p(i).

We observe that L(F ) is the optimal solution of the following linear program:
minimize μ subject to the constraints

∀x, y such that f(x) �= f(y) : μ−
∑

i
x(i) �=y(i)

p(i) ≥ 0,

and to the constraints
N∑

i=1

p(i) = 1 and ∀i ∈ [N ] : p(i) ≥ 0.

Clearly, its solution set is nonempty. Thus L(f) is the optimal solution of the
dual linear program: maximize ν subject to the constraints

∀i ∈ [N ] : ν −
∑

x,y
xi=yi

w(x, y) ≤ 0

∀x, y : w(x, y) ≥ 0, and w(x, y) = 0 if F (x) = F (y)

and to the constraint
∑

x,y

w(x, y) = 1.

Hence L(F ) = max
w

min
i

∑

xi=yi

w(x, y)
∑

x,y
w(x, y)

and DL(F ) = 1
1−L(F ) = PL(F ). �

4.1 Application to Ordered Search and Connectivity

Proposition 1. For any error bound ε ∈ [0, 1
2 ) we have

Qna2,ε(Ordered Search) ≥ Cε(N − 1).
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Proof. Consider the weight function w(x, y) =

{
1 if |F (y)− F (x)| = 1,
0 otherwise.

Thus

w(x, y) = 1 when the leftmost 1’s in x and y are adjacent. Hence
∑

x,y
w(x, y) =

2(N−2)+2. Moreover, if w(x, y) �= 0 and xi �= yi then {F (x), F (y)} = {i, i+1}.
Therefore, max

i

∑

x,y
xi �=yi

w(x, y) = 2 and the result follows from Theorem 6. �

Our second application of Theorem 6 is to the graph connectivity problem. We
consider the adjacency matrix model: x(i, j) = 1 if ij is an edge of the graph.
We consider undirected, loopless graph so that we can assume j < i. For a graph
on n vertices, the black box x therefore has N = n(n− 1)/2 entries. We denote
by Gx the graph represented by x.

Theorem 7. For any error bound ε ∈ [0, 1
2 ), we have

Qna2,ε(Connectivity) ≥ Cεn(n− 1)/8.

Proof. We shall use essentially the same weight function as in ( [6], Theorem 8.3).
Let X be the set of all adjacency matrices of a unique cycle, and Y the set of
all adjacency matrices with exactly two (disjoint) cycles. For x ∈ X and y ∈ Y ,
we set w(x, y) = 1 if there exist 4 vertices a, b, c, d ∈ [n] such that the only
differences between Gx and Gy are that:

1. ab, cd are edges in Gx but not in Gy.
2. ac, bd are edges in Gy but not in Gx.

We claim that

max
ij

∑

x∈X,y∈Y
x(i,j) �=y(i,j)

w(x, y) =
8

n(n− 1)

∑

x∈X,y∈Y
x(i,j) �=y(i,j)

w(x, y). (1)

The conclusion of Theorem 7 will then follow directly from Theorem 6. By
symmetry, the function that we are maximizing on the left-hand side of (1) is in
fact independent of the edge ij. We can therefore replace the max over ij by an
average over ij: the left-hand side is equal to

1
N

∑

x∈X,y∈Y
w(x, y)|{ij; x(i, j) �= y(i, j)}|.

Now, the condition x(i, j) �= y(i, j) holds true if and only if ij is one of the 4
edges ab, cd, ac, bd defined at the beginning of the proof. This finishes the proof
of (1), and of Theorem 7. �

A similar argument can be used to show that testing whether a graph is bipartite
also requires Ω(n2) queries.
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5 Some Open Problems

For the “1-to-1 versus 2-to-1” problem, one would expect a higher quantum
query complexity in the nonadaptive setting than in the adaptive setting. This
may be difficult to establish since the adaptive lower bound [2] is based on the
polynomial method. Hidden Translation [7] (a problem closely connected to the
dihedral hidden subgroup problem) is another problem of interest. No lower
bound is known in the adaptive setting, so it would be natural to look first for
a nonadaptive lower bound. Finally, one would like to identify some classes of
problems for which adaptivity does not help quantum algorithms.

Acknowledgements. This work has benefited from discussions with Sophie
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Abstract. We study logics defined in terms of so-called second-order
monadic groupoidal quantifiers. These are generalized quantifiers defined
by groupoid word-problems or equivalently by context-free languages. We
show that, over strings with built-in arithmetic, the extension of monadic
second-order logic by all second-order monadic groupoidal quantifiers
collapses to its fragment mon-Q1

GrpFO. We also show a variant of this
collapse which holds without built-in arithmetic. Finally, we relate these
results to an open question regarding the expressive power of finite leaf
automata with context-free leaf languages.

1 Introduction

We study logics defined in terms of so-called second-order monadic groupoidal
quantifiers. These are generalized quantifiers defined by groupoid word-problems
or equivalently by context-free languages. A groupoid is a finite multiplication
table with an identity element. For a fixed groupoid G, each S ⊆ G defines a
G-word-problem, i.e., a language W(S,G) composed of all words w, over the
alphabet G, that can be bracketed in such a way that w multiplies out to an
element of S. Groupoid word-problems relate to context-free languages in the
same way as monoid word-problems relate to regular languages: Every such
word-problem is context-free, and every context-free language is a homomorphic
pre-image of a groupoid word-problem (this result is credited to Valiant in [2]).

Monoidal quantifiers are generalized quantifiers defined by monoid word-
problems or equivalently by regular languages. It was known [1] that first-order
logic with unnested unary monoidal quantifiers characterizes the class of regular
languages. In [6] this was extended to show the following

∃SOM = mon-Q1
MonFO = FO(mon-Q1

Mon) = SOM(mon-Q1
Mon) = REG . (1)

In (1), ∃SOM stands for existential second-order monadic logic and REG denotes
the class of regular languages. The class mon-Q1

MonFO is the class of all languages
� The first author was partially supported by grant 106300 of the Academy of Finland
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describable by applying a specific monadic second-order monoidal quantifier QL
to an appropriate tuple of formulas without further occurrences of second-order
quantifiers. On the other hand, in FO(mon-Q1

Mon) arbitrary nestings of monoidal
quantifiers is allowed, analogously to SOM(mon-Q1

Mon) in which the base logic
is second-order monadic logic.

We see that with monoidal quantifiers the situation is clear-cut, i.e., formu-
las with monadic second-order monoidal quantifiers cannot define non-regular
languages. Note that over strings with built-in arithmetic the classes in (1)
are presumably not equal, e.g., ∃SOM ⊆ NP and already in FO(mon-Q1

Mon)
PSPACE-complete languages can be defined by a similar argument as in Propo-
sition 1. Similarly, the equivalences in (1) do not hold if non-monadic quantifiers
are also allowed (under some reasonable complexity-theoretic assumptions).

In [6] it was asked what is the relationship of the corresponding logics if
monoidal quantifiers are replaced by groupoidal quantifiers. In this paper we
address this question and show the following:

mon-Q1
GrpFO(+,×) = FO(mon-Q1

Grp) = SOM(mon-Q1
Grp,+,×) . (2)

It is interesting to note that in the case of groupoidal quantifiers the collapse of
the logics happens in the presence of built-in arithmetic.

In Sect. 4 we consider groupoidal quantifiers with a slight change in their
semantics (notation Q�L). We show that the analogue of (2) also holds in this
case. It turns out that (2) remains valid even if we drop the built-in predicates
+ and × from mon-Q�GrpFO(+,×). Finally, we relate these results to an open
question regarding the expressive power of finite leaf automata with context-free
leaf languages.

2 Generalized Quantifiers

We follow standard notation for monadic second-order logic with linear order,
see, e.g., [14]. We mainly restrict our attention to string signatures, i.e., signa-
tures of the form 〈Pa1 , . . . , Pas〉, where all the predicates Pai are unary, and in
every structure A, A |= Pai(j) iff the jth symbol in the input is the letter ai.
Such structures are thus words over the alphabet {a1, . . . , as}. We assume that
the universe of each structure A is of the form {0, . . . , n−1} and that the logic’s
linear order symbol refers to numerical order on {0, . . . , n − 1}. For technical
reasons to be motivated shortly, we also assume that every alphabet has a built-
in linear order, and we write alphabets as sequences of symbols to indicate that
order, e.g., in the above case we write (a1, . . . , as).

Our basic formulas are built from first- and second-order variables in the
usual way, using the Boolean connectives {∧,∨,¬}, the relevant predicates Pai

together with {=, <}, the constants min and max, the first- and second-order
quantifiers {∃, ∀}, and parentheses.

SOM is the class of all languages definable using formulas as just described.
(The letters SOM stand for second order monadic logic; in the literature, this
logic is sometimes denoted by MSO.) FO is the subclass of SOM restricted to
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languages definable by first-order formulas. It is known [12] that FO is equal to
the class of star-free regular languages and that SOM equals the class REG of
regular languages (see [4,3,15]). Sometimes we assume that our structures are
also equipped with the built-in predicates + and ×. This assumption is signalled,
e.g., by the notation FO(+,×).

Next, we extend logics in terms of generalized quantifiers. The Lindström
quantifiers of Def. 1 are precisely what has been referred to as “Lindström quan-
tifiers on strings” [5]. The original more general definition [11] uses transforma-
tions to arbitrary structures, not necessarily of string signature.

Definition 1. Consider a language L over an alphabet Σ = (a1, a2, . . . , as).
Such a language gives rise to a Lindström quantifier QL, that may be applied to
any sequence of s− 1 formulas as follows:

Let x be a k-tuple of variables. We assume the lexical ordering on {0, 1, . . . , n−
1}k, and we write x(1) < x(2) < · · · < x(nk) for the sequence of potential values
taken on by x. The k-ary Lindström quantifier QL binding x takes a meaning
if s − 1 formulas, each having as free variables the variables in x (and possibly
others), are available. Let ϕ1(x), ϕ2(x), . . . , ϕs−1(x) be these s − 1 formulas.
Then QLx

[
ϕ1(x), ϕ2(x), . . . , ϕs−1(x)

]
holds on a string w = w1 · · ·wn, iff the

word of length nk whose ith letter, 1 ≤ i ≤ nk, is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1 if w |= ϕ1(x(i)),
a2 if w |= ¬ϕ1(x(i)) ∧ ϕ2(x(i)),

...
as if w |= ¬ϕ1(x(i)) ∧ ¬ϕ2(x(i)) ∧ · · · ∧ ¬ϕs−1(x(i)),

belongs to L.

As an example, take s = 2 and consider L∃ =def 0∗1(0 + 1)∗; then QL∃ is the
usual first-order existential quantifier. Similarly, the universal quantifier can be
expressed using the language L∀ =def 1∗. The quantifiers QLmod p

for p > 1 are
known as modular counting quantifiers [14].

In this paper we are especially interested in quantifiers defined by groupoid
word problems. The following definition is due to Bédard, Lemieux, and
McKenzie [2]:

Definition 2. A groupoidal quantifier is a Lindström quantifier QL where L is
a word-problem of some finite groupoid.

Usage of groupoidal quantifiers in our logical language is signalled by QGrp.
The class QGrpFO is the class of all languages definable by applying a sin-
gle groupoidal quantifier to an appropriate tuple of FO formulas. The class
FO(QGrp) is defined analogously, but allowing groupoidal quantifiers to be used
as any other quantifier would (i.e., allowing arbitrary nesting).

Second-order Lindström quantifiers on strings were introduced in [5]. Here,
we are mainly interested in those binding only set variables, so called monadic
quantifiers. For each language L we define two monadic quantifiers QL and Q�L
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with slightly different interpretations. It turns out that the interpretation QL,
which was used in [6], is natural in the context of finite automata. On the other
hand, the quantifier Q�L is the exact second-order analogue of the corresponding
first-order quantifier QL.

Definition 3. Consider a language L over an alphabet Σ = (a1, a2, . . . , as). Let
X = (X1, . . . , Xk) be a k-tuple of unary second-order variables, i.e., set variables.
There are 2nk different instances (assignments) of X. We assume the following
ordering on those instances: Let each instance of a single Xi be encoded by a bit
string si0 · · · sin−1 with the meaning sij = 1 ⇐⇒ j ∈ Xi. Then

i) we encode an instance of X by the bit string

s10s
2
0 · · · sk0s11s21 · · · sk1 · · · s1n−1s

2
n−1 · · · skn−1

and order the instances lexicographically by their codes.
ii) we encode an instance of X by the bit string

s10s
1
1 · · · s1n−1s

2
0s

2
1 · · · s2n−1 · · · sk0sk1 · · · skn−1

and order the instances lexicographically by their codes.

The monadic second-order Lindström quantifier QL (respectively Q�L) binding
X takes a meaning if s − 1 formulas, each having free variables X, are avail-
able. Let ϕ1(X), ϕ2(X), . . . , ϕs−1(X) be these s − 1 formulas. Then ϕ =
QLX

[
ϕ1(X), ϕ2(X), . . . , ϕs−1(X)

]
holds on a string w = w1 · · ·wn, iff the word

of length 2nk whose ith letter, 1 ≤ i ≤ 2nk, is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1 if w |= ϕ1(X
(i)

),
a2 if w |= ¬ϕ1(X

(i)
) ∧ ϕ2(X

(i)
),

...

as if w |= ¬ϕ1(X
(i)

) ∧ ¬ϕ2(X
(i)

) ∧ · · · ∧ ¬ϕs−1(X
(i)

),

belongs to L. Above, X
(1)

< X
(2)

< · · · < X
(2nk)

denotes the sequence of all
instances ordered as in i). The notation Q�L is used when the ordering of the
instances is as in ii).

Again, taking as examples the languages L∃ and L∀, we obtain the usual second-
order existential and universal quantifiers. Note that for L ∈ {L∃, L∀} the quanti-
fiersQL andQ�L are “equivalent”. This is due to the fact that, for the membership
in L, the order of letters in a word does not matter.

The class mon-Q1
LFO is the class of all languages describable by applying a

specific monadic second-order groupoidal quantifier QL to an appropriate tu-
ple of formulas without further occurrences of second-order quantifiers. The
class mon-Q1

GrpFO is defined analogously using arbitrary monadic second-order
groupoidal quantifiers. The class SOM(mon-Q1

Grp) is defined analogously, but
allowing groupoidal quantifiers to be used as any other quantifier would (i. e.,
allowing arbitrary nesting). Analogous notations are used for the quantifiers Q�L.
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3 Groupoidal Quantifiers QL

In this section we consider second-order monadic groupoidal quantifiers under
the semantics QL. We show that the extension of SOM in terms of all second-
order monadic groupoidal quantifiers collapses to its fragment mon-Q1

GrpFO over
strings with built-in arithmetic.

The following result on first-order groupoidal quantifiers will be central for
our argumentation. Below, QFree denotes the set of quantifier-free formulas in
which the predicates + and × do not appear.

Theorem 1 ([10]). QGrpQFree = FO(QGrp) = FO(QGrp+,×) = LOGCFL
over string signatures.

We shall use the following version of Theorem 1.

Lemma 1. Let τ = {<, c1, . . . , cs}, where c1, . . . , cs are constant symbols. Then
on τ-structures

QGrpQFree = FO(QGrp) = FO(QGrp+,×) .

Proof. The idea is to encode τ -structures into strings and then apply Theorem 1.
In order to encode the information about the identities among c1, . . . , cs, we in-
troduce a predicate symbol PA for each non-empty A ⊆ {c1, . . . , cs}. To simplify
notation, let us assume that τ = {<, c1, c2}. The general case is analogous.

Suppose that K is a class of τ -structures definable by ϕ ∈ FO(QGrp+,×).
We shall encode K as a class of strings over signature 〈P{c1}, P{c2}, P{c1,c2}, P ∗〉.
The predicate P{c1,c2} is used when the interpretations of c1 and c2 coincide
and P ∗ is interpreted by all the elements different from c1 and c2. Denote by
A′ the string encoding a τ -structure A. Let ϕ∗ be acquired from ϕ by replacing
atomic subformulas of the form ci = d by P{ci}(d) ∨ P{c1,c2}(d) and c1 = c2 by
the formula ∃xP{c1,c2}(x). It is now obvious how to translate atomic formulas
using the predicates +,×, and <, e.g., ci < x is replaced by ∃y((P{ci}(y) ∨
P{c1,c2}(y)) ∧ y < x). It is easy to verify that for all A, A |= ϕ ⇔ A′ |= ϕ∗.
By Theorem 1 there is a sentence θ ∈ QGrpQFree which is equivalent to ϕ∗

over strings. Let θ∗ be acquired from θ by the following substitutions: P{ci}(d)
is replaced by ci = d∧ c1 �= c2, P{c1,c2}(d) by c1 = d∧ c1 = c2, and finally P ∗(d)
by c1 �= d ∧ c2 �= d. Now θ∗ ∈ QGrpQFree and θ∗ defines K.

We are now ready for the main result of this section.

Theorem 2. mon-Q1
GrpFO(+,×) = FO(mon-Q1

Grp) = SOM(mon-Q1
Grp,+,×)

over strings.

Proof. Fix a signature τ = 〈Pa1 , . . . , Pas〉. Suppose that B is a language de-
fined by some sentence ϕ ∈ SOM(mon-Q1

Grp,+,×)[τ ]. We may assume that
ϕ ∈ FO(mon-Q1

Grp)[τ ] since the second-order existential quantifier is included
in mon-Q1

Grp and already the extension of FO by the quantifier corresponding
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to the (context-free) language majority can define the predicates + and × on
ordered structures [9].

Denote by σ = {<,+,×, c1, . . . , cs} the signature where each ci is a constant
symbol. For a τ -structure A = 〈{0, . . . , n − 1}, <, PA

a1
, . . . , PA

as
〉, let A∗ be the

following σ-structure

A∗ = 〈{0, . . . , 2n − 1}, <,+,×, cA∗
1 , . . . , cA

∗
s 〉,

where cA
∗

i is the unique integer (< 2n) whose length n binary representation
corresponds to PA

i .
We shall first show that there is a sentence ϕ∗ ∈ FO(QGrp,+,×)[σ] such that

for all τ -structures A,
A |= ϕ⇔ A∗ |= ϕ∗ .

We define ϕ∗ via the following transformation:

x1 = x2 � x1 = x2

x1 < x2 � x1 < x2

Pai(z) � BIT(ci, z)
Y (x) � BIT(y, x)
ψ ∧ φ � ψ∗ ∧ φ∗
¬ψ � ¬ψ∗
∃xψ � ∃x(x < n ∧ ψ∗(x))

QLX1, . . . , Xk[ψ1, . . . , ψs−1] � QL′x1, . . . , xk[ψ∗1 , . . . , ψ
∗
s−1]

Each assignment f over A is associated with the assignment f∗ over A∗ such
that if f(X) = A ⊆ {0, . . . , n− 1} then f∗(x) is the unique a < 2n whose binary
representation is given by s0 · · · sn−1 where sj = 1 ⇐⇒ j ∈ A. The predicate
BIT, which is FO(+,×)-definable, allows us to recover the set A from the number
a. In other words, BIT(a, j) holds if bit n − j − 1 in the binary representation
of a is 1 iff j ∈ A. The language L′ is defined by

L′ = {w | s(w) ∈ L},

where s is defined as follows: s maps a word w to w if |w| �= 2km for all m ∈ N
∗.

Assuming |w| = 2km, the position i of each letter in w is determined by a binary
string of length km:

Pbin(i) = r11 · · · r1m · · · rk1 · · · rkm .

Now, s takes w to the unique string whose ith letter is identical with the letter
in position r11r

2
1 · · · rk1r12r22 · · · rk2 · · · r1mr2m · · · rkm in w. In other words, s corrects

the asymmetry in the semantics of first-order and second-order quantifiers. It
is easy to verify that the language L′ is FO(+,×) reducible to L and thus also
definable in FO(QGrp,+,×). Therefore, the logic FO(QGrp,+,×) is also closed
under the quantifier QL′ .
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By Lemma 1, there is a sentence

θ = QLx1, . . . , xl(χ1, . . . , χw),

where each χi is quantifier-free and does not contain the predicates + and ×,
equivalent to ϕ∗. The idea is now to translate θ to the logic mon-Q1

LFO(+,×)
by changing first-order variables to second-order variables. We shall construct
formulas δi(X) such that for all τ -structures A

A |= QLX1, . . . , Xl(δ1(X), . . . , δw(X))⇔ A∗ |= θ .

The formula δi(X) should be satisfied by A1, . . . , Al ⊆ {0, . . . , n− 1} iff χi is
satisfied by the tuple (a1, . . . , al) ∈ {0, . . . , 2n− 1}l corresponding to A1, . . . , Al.
Again we need to correct the asymmetry caused by the difference in the semantics
of first-order and second-order quantifiers. As in Definition 3, each Ai determines
the string si0 · · · sin−1 with the meaning sij = 1 ⇐⇒ j ∈ Ai. The tuple A is now
encoded by the string

s10s
2
0 · · · sl0s11s21 · · · sl1 · · · s1n−1s

2
n−1 · · · sln−1 . (3)

Therefore, A should satisfy δi(X) iff the tuple a∗1, . . . , a
∗
l satisfies χi, where the

concatenation of the length n binary representations of a∗1, . . . , a
∗
l correspond

to the string in (3). In other words, the binary representation of a∗i is given by
BIT(a∗i , j) = 1 iff the (n(i− 1) + j)th bit from the right is 1 in (3) iff c ∈ Ar for
the unique r and c for which n(i−1)+j = cl+r−1. Since χi is quantifier-free and
contains only atomic formulas such as x1 < c2 or xl = xk, we can construct the
formulas δi(X) using the fact that the binary representations of a∗1, . . . , a

∗
l can be

recovered from A in a first-order way with the help of arithmetic. By the above,
it is clear that the sentence QLX1, . . . , Xl(δ1(X), . . . , δw(X)) now defines B.

4 Groupoidal Quantifiers Q�
L

In [5] the expressive power of generalized second-order quantifiers was character-
ized in terms complexity classes given by so-called leaf languages. In particular,
for every language B that has a neutral letter, i.e., a letter c ∈ Γ such that, for
all u, v ∈ Γ ∗, we have uv ∈ B ⇐⇒ ucv ∈ B, the following was shown to hold.
Let N be the class of languages that have a neutral letter.

Theorem 3 ([5]). For any B ∈ N, LeafP(B) = Q�BFO.

Above, LeafP(B) denotes the class of languages defined in polynomial-time in
terms of non-deterministic Turing machines using the leaf languageB and Q�BFO
denotes the class of all languages describable by applying the quantifier Q�B to
an appropriate tuple of first-order formulas (the quantifier Q�B is allowed to
bind relation variables of arbitrary arity). Note that in this context we could
equivalently use the semantics QL instead of Q�L. This is due to the fact that
the difference between QL and Q�L only appears if more than one second-order
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variable is quantified and this can be avoided by joining relations into a single
relation of higher arity.

Since it is known that there are regular languagesB, e.g., the word problem for
the group S5, for which LeafP(B) = PSPACE [8], we conclude that for such B,

Q�BFO = PSPACE . (4)

By a simple padding argument, we see that already first-order logic with a
monadic second-order quantifier Q�B is sufficient to define a PSPACE-complete
language.
Proposition 1. Let L be a language and suppose that a language A is definable
by a sentence ϕ ∈ Q�LFO. Let k be the maximum of the arities of the relations
quantified in ϕ. Then the language

A∗ = {w�0|w|
k−|w| | w ∈ A}

is definable in FO(mon-Q�L,+,×).

Proof. The proof using standard techniques will appear in the journal version of
the paper.

Proposition 1 shows that logics FO(mon-Q�L,+,×) can be quite powerful. In this
section we show that a result analogous to Theorem 2 also holds with respect
to the semantics Q�L. We also show that in the most general case, i.e., when the
logic in question is the extension of SOM by all second-order monadic groupoidal
quantifiers, both semantics turn out to be equal in expressive power.
Theorem 4. mon-Q�GrpFO = SOM(mon-Q�Grp,+,×) = SOM(mon-Q1

Grp,+,×)
over strings.

Proof. Let us first note that by an analogous argument as in the proof of The-
orem 2 any sentence ϕ ∈ SOM(mon-Q�Grp,+,×) can be first translated into
FO(QGrp,+,×) and then to the logic mon-Q1

GrpFO(+,×). In fact, the first trans-
lation can be even simplified since the quantifier QL′ is not needed. Therefore,
it suffices to show the converse inclusion.

Let A be defined by a sentence ϕ ∈ SOM(mon-Q1
Grp,+,×). We use the same

argument as in the proof of Theorem 2. We only need to modify the last part of
the proof and define the translation from a sentence θ of the form

QLx1, . . . , xk(χ1, . . . , χv),

where each χi is quantifier-free and does not contain the predicates + and ×. We
do this in the following way. Denote by X = Y the formula ∀z(X(z) ↔ Y (z)),
and by X < Y the first-order formula defining the ordering of subsets when
treated as length n binary strings. The transformation is now defined by

x = y � X = Y

x < y � X < Y

ψ ∧ φ � ψ′ ∧ φ′
¬ψ � ¬ψ′

QLx1, . . . , xv[ψ1, . . . , ψv] � Q�LX1, . . . , Xv[ψ′1, . . . , ψ
′
v]
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The use of Q�L allows us to define the translation simply by changing first-order
variables to second-order variables. It is easy to verify that θ′ now defines the
language A.

By combining Theorems 2 and 4, we get

Corollary 1. SOM(mon-Q1
Grp,+,×) = mon-Q1

GrpFO(+,×) = mon-Q�GrpFO =
SOM(mon-Q�Grp,+,×).

5 Connection to Leaf Automata

A finite leaf automaton is a tuple M = (Q,Σ, δ, s, Γ, β) where Q is the finite
set of states, Σ is an alphabet, the input alphabet, δ : Q × Σ → Q+ is the
transition function, s ∈ Q is the initial state, Γ is an alphabet, the leaf alphabet,
and β : Q → Γ is a function that associates a state q with its value β(q). The
sequence δ(q, a), for q ∈ Q and a ∈ Σ, contains all possible successor states of M
when reading letter a while in state q, and the order of letters in that sequence
defines a total order on these successor states. This definition allows the same
state to appear more than once as a successor in δ(q, a).

Let M be as above. The computation tree TM (w) of M on input w is a labeled
directed rooted tree defined as follows:

– The root of TM (w) is labeled (s, w).
– Let v be a node in TM (w) labeled by (q, x), where x �= ε (the empty word),
x = ay for a ∈ Σ, y ∈ Σ∗. Let δ(q, a) = q1q2 · · · qk. Then v has k children in
TM (w), and these are labeled by (q1, y), (q2, y), . . . , (qk, y) in this order.

If we look at the tree TM (w) and attach the symbol β(q) to a leaf in this
tree with label (q, ε), then leafstringM (w) is defined to be the string of symbols
attached to the leaves, read from left to right in the order induced by δ.

Definition 4. For A ⊆ Γ ∗, the class LeafFA(A) consists of all languages B ⊆
Σ∗, for which there is a leaf automaton M as just defined, with input alphabet
Σ and leaf alphabet Γ such that for all w ∈ Σ∗, w ∈ B iff leafstringM (w) ∈ A.
If C is a class of languages then LeafFA(C) = ∪A∈CLeafFA(A).

In [13] the acceptance power of leaf automata with different kinds of leaf lan-
guages was examined. It was shown that, with respect to resource-bounded leaf
language classes, there is not much difference, e.g., between automata and Tur-
ing machines. On the other hand, if the leaf language class is a formal language
class then the differences can be huge. In particular it was shown in [13] that
LeafFA(REG) = REG while it is known that LeafP(REG) = PSPACE. In [13]
the power of LeafFA(CFL) was left as an open question. The only upper and lower
bounds known are CFL � LeafFA(CFL) ⊆ DSPACE(n2) ∩DTIME

(
2O(n)

)
.

In [6] the class LeafFA(L) was logically characterized assuming that the
language L has a neutral letter.

Theorem 5 ([6]). For any L ∈ N, LeafFA(L) = mon-Q1
LFO.
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We would like to use either Theorem 2 or Theorem 4 to show that the class
LeafFA(CFL) contains PSPACE-complete languages. Unfortunately, Theorem 2
does not apply because it assumes built-in arithmetic which is not allowed in The-
orem 5. On the other hand, due to the change in the interpretation of quantifiers
in Theorem 4, it is not clear that Theorem 5 holds in this case.

Recall that Greibach’s hardest context-free language H is a so-called non-
deterministic version of the Dyck language D2, the language of all syntacti-
cally correct sequences consisting of letters for two types of parentheses. It is
known that every L ∈ CFL reduces to H under some homomorphism [7]. It
was shown in [10] that in Theorem 1 the logic QGrpQFree can be even re-
placed by Qpad(H)QFree, where pad(H) is H extended by a neutral symbol.
Therefore, we can similarly replace the logics mon-Q1

GrpFO and mon-Q�GrpFO, in
Theorems 2 and 4, by mon-Q1

pad(H)FO(+,×) and mon-Q�pad(H)FO, respectively.
We call a language symmetric if it is closed under permuting the letters of

words. Note that if pad(H) happened to be symmetric, then we could use the
proof of Theorem 4 to show that mon-Q1

pad(H)FO = mon-Q1
pad(H)FO(+,×).

However, this assumption turns out not to be true, since a symmetric context-
free language cannot be complete for all of CFL under homomorphims. It can
be even shown that symmetric context-free languages are contained in TC0.

6 Conclusion

In this paper we have studied several monadic second-order logics with groupoidal
quantifiers. Our collapse results partially address an open question in [6]. However,
the main open question of that paper remains: What is the power of finite leaf-
automata with context-free leaf languages? If one could prove equality between
the two variants of semantics for second-order quantifiers, i.e.,

mon-Q1
GrpFO = mon-Q�GrpFO,

then it follows immediately from our results that such simple automata can even
accept PSPACE-complete problems.
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1 Motivation

In this paper, which extends [3], we consider the following problem

Given that we know only that a probability function w on a predicate
language L satisfies the finite set K of constraints

q∑

i=1

cijw(θi) ≤ bj , j = 1, . . . ,m

where the θi are sentences of L and the cij , bj ∈ R what value should be
given to w(θ), for a sentence θ of L?

in the limited case where L has just finitely many unary predicate symbols
P1, . . . , Pn and countably many constant symbols a1, a2, . . . (which are intended
to exhaust the universe) but no function symbols nor equality.

The relevance of this question for AI is that we imagine an agent whose knowl-
edge consists of just K wishing to nevertheless assign probabilities to other sen-
tences of the language. Indeed if, as seems quite reasonable, we require these
assigned values to be consistent as a whole with K and w being a probability
function then the question amounts to asking how one should best pick a prob-
ability function w on L, that is a function w on the set SL sentences of the
language L satisfying that for all θ, φ, ∃xψ(x) ∈ SL
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(P1) If � θ then w(θ) = 1

(P2) If � ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ)

(P3) w(∃xψ(x)) = limr→∞w(
∨r
j=1 ψ(aj)),

given that w must also satisfy K.
A number of possible answers to such a question have been proposed both for

propositional and predicate languages, for example [1], [2], [3], [9], [10], [11], [17],
[19], [20], [21], [22], based on various underlying assumptions about the form and
origin of the knowledge and the probability function w, see [3] for a discussion.
As in that paper we shall assume that w is a subjective probability function
corresponding to the beliefs of some agent and that the assigning agent intends
to act rationally or logically (though we shall not make any attempt to define
these terms here, instead simply leaving it to the reader to decide to what extent
our proposals fulfill that intention).

The method we shall describe in this note extends a well developed approach
(see [17, Chapter 6]) for the analogous problem in the propositional case to the
limited predicate situation when the language L is purely unary. This same path
has already been trodden in [3] in a special case (viz. the Maximum Entropy
Inference Process). The main novelty in this paper is in giving a general result
which applies to a wide range of inference processes.

In the next section we explain, in the specific case of the Minimum Distance
Inference Process (see [17, p76]), this method for picking a probability function
satisfying K and the key limit result, which we prove in the subsequent section.
In the final section we consider how this specific case generalizes.

2 The Method

The idea, as explained in [3], for assigning a probability to a sentence
θ(a1, a2, . . . , am) from SL is that this should be the limit as r tends to ∞ of
the probability that one would assign to it being true in a finite structure with
universe { ai | i ≤ r }. In other words we wish to approximate our beliefs in what
holds in a universe with denumerably many individuals a1, a2, . . . with our beliefs
of what holds in its large finite substructures.

In more detail let Lk be the sublanguage of L with the same unary predicate
symbols P1, . . . , Pn but only the constant symbols a1, ..., ak and let Q1, ..., QJ ,
J = 2n enumerate all formulas of the form

P ε11 (x) ∧ P ε22 (x) ∧ ... ∧ P εnn (x) (1)

where the ε1, ε2, . . . , εn ∈ {0, 1} and P 1 = P, P 0 = ¬P . Let Lr be the proposi-
tional language with the propositional variables Pj(ai), i = 1, ..., r j = 1, ..., n.
For k < r define ()(r) : SLk → SLr inductively as follows:

Pj(ai)(r) = Pj(ai),

(¬φ)(r) = ¬φ(r),
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(φ ∨ θ)(r) = φ(r) ∨ θ(r),
(φ ∧ θ)(r) = φ(r) ∧ θ(r),

(∃xψ(x))(r) =
r∨

i=1

ψ(ai)(r).

Let K(r) be the result of replacing every sentence θi in K by θ(r)i . As indicated
above we now wish to make a ‘rational’ choice N(K(r)) of a probability function
satisfying K(r) and thence define our ‘rational’ probability function w satisfying
K by

w(θ) = lim
r→∞N(K(r))(θ(r)).

Apart from the question of whether this limit even exists (which we will confront
in the next section), and even then satisfies K, we need to justify our assignment
of probabilities for these finite substructures satisfying the K(r). Fortunately
however we are now essentially working in the propositional calculus and a num-
ber of such assignment processes, in this context called Inference Processes, N ,
for picking a probability function N(K) (or set of functions, see [22]) satisfying
a probabilistic propositional knowledge base K have been studied, and to some
extent justified, see for example [17, Chapter 6].

Currently the generally most accepted inference process according to this
criterion of rationality is the so called Maximum Entropy Inference Process, and
indeed the programme we are advocating in this paper has already been carried
out for maximum entropy in [3]. What we plan to do here is to retread this path
using the Minimum Distance Inference Process, MD, and then point out how
the necessary steps actually hold for a wide range of other inference processes.

Before proceeding with the proof we need to recall the definition ofMD. Given
a finite proposition language, say with propositional variables p1, p2, . . . , pk, a
probability function v on the sentences of this language is determined by (and
will be identified with) the vector

〈v(β1), v(β2), . . . , v(β2k )〉 ∈ D2k = {〈x1, x2, . . . , x2k〉 |xi ≥ 0,
∑

i

xi = 1 }

where the βj run through the atoms

pε11 ∧ pε22 ∧ . . . ∧ pεkk .
Given a non-empty closed and convex subset C of D2k we define MD(C) to
be that (unique) probability function 〈x1, x2, . . . , x2k〉 ∈ C for which

∑
i x

2
i

is minimal. Equivalently that point in C closest in Euclidean distance to the
probability function 〈2−k, 2−k, . . . , 2−k〉, which we can think of as representing
complete ignorance.

3 The Existence of the Limit

The following results appear in [3] (also there as Lemma 1, Lemma 2 and The-
orem 3) and we shall use them in what follows.
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Lemma 1. If θ, φ ∈ SLk and k ≤ r and θ ≡ φ then θ(r) ≡ φ(r).

Let αi for i = 1, ..., Jk enumerate the exhaustive and exclusive set of sentences
of the form

k∧

i=1

Qmi(ai)

where the Qi are as in (1).

Lemma 2. Any sentence θ ∈ SLk is equivalent to a disjunction of consistent
sentences φi,ε of the form

αi ∧
J∧

j=1

(∃xQj(x))εj

where the εj ∈ {0, 1} and � ¬(φi,ε ∧ φj,δ) whenever 〈i, ε〉 = 〈j, δ〉.
Theorem 3. K(r) is a satisfiable subset of SLr for large r.

Theorem 4. For θ ∈ SL:

w(θ) = lim
r→∞MD(K(r))(θ(r))

exists and is a probability function on L satisfying K.

Proof. Assume throughout that r is large so that Theorem 3 applies. By
Lemma 2 every sentence θ(a1, ..., ak) ∈ SL is equivalent to a disjunction of
consistent sentences of the form

φi,ε = αi ∧
J∧

j=1

(∃xQj(x))εj .

If αi =
∧k
j=1Qmj (aj) then let

Ai = {mj | j = 1, ..., k }, Pε = { j | εj = 1 }, Pi,ε = { j | j ∈ Pε and j /∈ Ai }
so

φ
(r)
i,ε = αi ∧

J∧

j=1

(
r∨

i=1

Qj(ai)

)εj

will be equivalent to

∨

mj∈Pε for j=k+1,...,r

Pi,ε⊆{ mj | k+1≤j≤r}

⎛

⎝αi ∧
r∧

j=k+1

Qmj (aj)

⎞

⎠ . (2)

If we set pε = |Pε| and pi,ε = |Pi,ε| then the number of disjuncts (i.e. atoms of
Lr) in (2) will be

pi,ε∑

j=0

(−1)j
(
pi,ε
j

)

(pε − j)r−k.
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Let w(r) = MD(K(r)). Since MD satisfies renaming (see [17, p95]), for every
atom ζ in the disjunction in (2)

w(r)(ζ) =
w(r)(φ(r)

i,ε )
∑pi,ε

j=0(−1)j
(
pi,ε

j

)
(pε − j)r−k

.

Hence if the ζj enumerate the atoms of Lr,

Jr
∑

j=1

(w(r)(ζj))2 =
∑

i,ε

⎛

⎝
w(r)(φ(r)

i,ε )
∑pi,ε

j=0(−1)j
(
pi,ε

j

)
(pε − j)r−k

⎞

⎠

2

=
∑

i,ε

(w(r)(φ(r)
i,ε ))2

∑pi,ε

j=0(−1)j
(
pi,ε

j

)
(pε − j)r−k

.

From this it follows that w satisfying K(r) is equivalent to some set of linear
inequalities ∑

i,ε

ci,ε,jw
(r)(φ(r)

i,ε ) ≤ bj, j = 1, . . . ,m (3)

where the ci,ε,j and bj do not depend on r. Hence the vector of values w(r)(φ(r)
i,ε )

(as i, ε vary) is that vector xi,ε ≥ 0 satisfying (3) for which

∑

i,ε

x2
i,ε

∑pi,ε

j=0(−1)j
(
pi,ε

j

)
(pε − j)r−k

(4)

is minimal.
Let c1 < c2 < ... < ck be the distinct values for pε which occur here and define

the sets
T0 = {x |

∑

i,ε

ci,ε,jw
(r)(φ(r)

i,ε ) ≤ bj, j = 1, . . . ,m}

and
Tj+1 = {x ∈ Tj |

∑

i,pε=cj+1

x2
i,ε is minimal }

for 0 ≤ j < k. Since these Tj are closed and convex any two points in Tj agree
on those coordinates 〈i, ε〉 with pε ≤ cj . Hence Tk consists of a single point, X
say. Notice that this point does not depend on r.

Since X ∈ T0 by (4)

∑

i,ε

(w(r)(φ(r)
i,ε ))2

∑pi,ε

j=0(−1)j
(
pi,ε

j

)
(pε − j)r−k

≤
∑

i,ε

X2
i,ε

∑pi,ε

j=0(−1)j
(
pi,ε

j

)
(pε − j)r−k

. (5)

The w(r)(φ(r)
i,ε ) have a convergent subsequence (as r →∞), which for notational

convenience we shall assume is the whole sequence, say
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Yi,ε = lim
r→∞w

(r)(φ(r)
i,ε ).

We shall show that Yi,ε = Xi,ε in turn for each of the cases pε = c1, c2, . . . , ck.
Firstly for the case of c1, multiplying (5) by cr−k1 and taking the limit as

r →∞ gives ∑

i,pε=c1

Y 2
i,ε ≤

∑

i,pε=c1

X2
i,ε

and hence for such ε, Yi,ε = Xi,ε by definition of T1.
To handle the case pε = c2 and beyond we will need the following lemma.

Lemma 5. Let B ⊆ Rm be a convex polyhedron with corners a1,a2, ...,aq. Let
c ∈ B and let f : Rm → Rn be the projection function given by

f 〈x1, x2, ..., xm〉 = 〈x1, x2, ..., xn〉
Suppose that yj ∈ Rn for j ∈ N are such that f−1(yj) ∩B = ∅ for all j and

limj→∞yj = f(c).

Then there is a subsequence zj ∈ B converging to c such that the f(zj) form a
subsequence of the yj .

Proof. Any point in B can be written as a linear combination

c +
q∑

i=1

λiei,

where ei = ai−c and the λi ≥ 0 with sum ≤ 1, so any x ∈ f(B) can be written
as

f(c) +
q∑

i=1

λif(ei)

with λi > 0 with sum at most 1, where we drop any terms with λi = 0 (but to
avoid messy notation assume there are none, and that this is true also for the
yj , otherwise pick a suitable subsequence with the same zero terms throughout).
Now for each yj pick one such presentation:

yj = f(c) +
q∑

i=1

λijf(ei)

and set

zj = c +
q∑

i=1

λijei.

It is obvious that the f(zj) form a subsequence of the yj . To show that limj→∞
zj = c it is enough to show that limj→∞

∑q
i=1 λijei = 0. To this end we will

show that limj→∞ λij = 0. We know that limj→∞ yj = f(c) and so we have
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lim
j→∞

q∑

i=1

λijf(ei) = 0.

Let

tj =
q∑

i=1

λijf(ei),

so
lim
j→∞

tj = 0

and tj is in the convex polyhedron with corners f(ei). For each tj pick a smallest
set f(ei1), ..., f(eih) such that:

tj =
h∑

k=1

λikjf(eik) (6)

with λikj ≥ 0 and
∑
ik
λikj ≤ 1. By taking a subsequence if necessary we can

assume that the tj all have the same smallest set and that λikj → λik as j →∞.
For simplicity of notation we assume that these smallest sets are all the ei, so
(6) will become

tj =
q∑

i=1

λijf(ei) (7)

and

0 =
q∑

i=1

λif(ei). (8)

Now if all the λi = 0 we have the required result, otherwise suppose some of the
λi > 0. Then from (7) and (8) we will have:

tj =
q∑

i=1

(λij − νλi)f(ei) (9)

Now as we increase ν from 0 one of the coefficients in (9) will become zero while
others are still non-negative and this contradicts the choice of smallest set, and
so is a contradiction. Hence we must have that all the λi = 0, as required. �

To continue the proof of Theorem 4 suppose that Yi,ε = Xi,ε for some pε = c2.
We have already shown that we do have equality when pε = c1 so by Lemma 5
there is a sequence of vectors z(r)

i,ε ∈ T0 such that for each i, ε

lim
r→∞ z

(r)
i,ε = Xi,ε

and the z(r)
i,ε form a subsequence of the w(r)(φ(r)

i,ε ) for pε = c1. For simplicity of
notation we will again assume that this subsequent is the whole sequence.
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By definition of w(r),

∑

i,ε

(w(r)(φ(r)
i,ε ))2

∑pi,ε

j=0(−1)j
(
pi,ε

j

)
(pε − j)r−k

≤
∑

i,ε

z2
i,ε

∑pi,ε

j=0(−1)j
(
pi,ε

j

)
(pε − j)r−k

.

The parts of these sums for pε = c1 are equal, so can be cancelled out. Multi-
plying both sides of what remains by cr−k2 and taking the limit as r → ∞ we
obtain, just as in the case of c1 that

∑

i,pε=c2

Yi,ε ≤
∑

i,pε=c2

Xi,ε.

But since, as we have already shown, the vector Yi,ε is in T1 this inequality must
also go the other way since the vector Xi,ε is in T2. We conclude as required
that Yi,ε = Xi,ε whenever pε = c2. Similar arguments give the same result for
c3, c4, . . . , ck, as required.

Finally, since any linear identity satisfied by all the w(r) eventually will be sat-
isfied by their limit it is clear that this limit is a probability function
satisfying K. �

4 Some Generalizations

So far we have proved Theorem 4 for a specific inference process, Minimum Dis-
tance, but in fact analogous proofs give the the result too for the Maximum Entropy
Inference Process (already proved in [3]), the Limiting Centre of Mass Inference
Process (see [17, p73-74]) and the spectrum of other inference processes based on
generalized Renyi Entropies. [For further results along these lines see [23].]

In our original question we imagined an agent wishing to assign probabilities
to all sentences on the basis of qualified knowledge K. A special case of this
is when K simply amounts to the assertion that some consistent, finite, set of
axioms T hold categorically, i.e.

K = {w(φ) = 1 |φ ∈ T }.

In this case our question might be reformulated as

Given a finite (consistent) set T of first order axioms what should we
take as the default or most normal model of T ? More precisely, if we
know only that the structure M with universe { ai | i ∈ N } is a model of
T what probability should we give to a sentence θ(a1, a2, . . . , an) being
true in M?

There are various approaches one might take to this question depending on the
interpretation of ‘most normal’. For example within a model theory context one
might consider a prime model, where such exists, to be the ‘most normal’ in the
sense of being the smallest and the canonical example (see for example [5, p96],
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[8, p336]). On the other hand one might feel that if possible the default model
should be existentially closed (see [24] for a precise definition) in the sense that
any quantifier free formula which could be satisfied in a superstructure model
of T was already satisfied in the default model. Alternatively we might consider
arguing via the distribution of models, see for example [1], [2], [9], [10], [11], in
order to make the default the ‘average’ model.

Furthermore, at first sight it would appear that there was already a rather
well studied approach to this problem via Inductive Logic. In that subject, see
for example [4], [7], [13], [16], this same problem with T = ∅ is quite central.
So it might seem that a solution to our problem here could be had by simply
taking a rationally justified probability function w championed within Inductive
Logic for the case of a completely empty knowledge base and then condition-
ing w on

∧ T . The first problem with that approach however is that there is
currently no clearly favored rational solution to the Inductive Logic problem.
But more seriously, those solutions w which have been proposed generally give
non-tautologous universal sentences probability 0, see for example [12], [14], [15],
[16, p22-23], [17, p196-197], and once w(

∧ T ) = 0 such conditioning will not be
possible.1,2

However if we assume that the sentences of T come from the purely unary
language of the preceding sections then the method described in this paper,
based on any of the above inference processes, indeed in this simple case of
categorical knowledge, K = {w(φ) = 1 |φ ∈ T }, based on any inference process
just satisfying the Renaming Principle, can be applied, and in fact always yield
the same answer. Namely that, in the notation of the proof of Theorem 4, if
ε1, . . . , εs are all the vectors ε for which

∧J
j=1(∃xQj(x))εj is consistent with

T and amongst which pε takes its largest value then w(θ(a1, . . . , ak)) = H/K
where

K = |{φi,εr |φi,εr is consistent with
∧
T , 1 ≤ i ≤ Jk, 1 ≤ r ≤ s }|,

H= |{φi,εr |φi,εr is consistent with θ(a1, . . . , ak)∧
∧
T ,1 ≤ i ≤ Jk, 1 ≤ r ≤ s }|.

In particular then w gives probability 1 to

s∨

i=1

J∧

j=1

(∃xQj(x))ε
i
j ,

1 It is true that proposals have been made for solutions to the Inductive Logic problem
which give some non-tautologous universal sentences non-zero probability, see for
example [6], [12], [14], [15], [18]. However they seem (to us) too ad hoc to be seriously
considered ‘logical’.

2 This apparent discontinuity between the cases when T =/�= ∅ is intriguing – the
method we shall apply in this paper still works when T = ∅ but gives an unsatis-
factory solution to the inductive logic problem, unsatisfactory in that it corresponds
to the so called completely independent solution which entertains no induction i.e.
learning by example, see for example [17, p172].
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(and probability 1/s to each of the disjuncts), thus exclusively favoring those
models M of T in which as many of the Qj are satisfied as possible, that is the
existentially closed models of T .

It would of course be nice to extend this approach (or develop an alternative)
to more than just these rather trivial unary languages. For example to the theory
saying that the relation< is transitive. In this case what is a ‘sensible’ probability
to even give to a1 < a2 ? Certainly the simple method suggested here fails, but
whether it can be suitable adapted to make it more applicable, whilst at the
same time retaining credibility in relation to the original philosophical question
apparently remains to be investigated.
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Using α-ctl to Specify Complex Planning Goals
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Abstract. The temporal logic ctl has been the preferred specification
language in the model checking framework. However, when this frame-
work is used for nondeterministic planning, it is not adequate to deal
with many useful planning problems with temporally extended goals.
This is because the validity of ctl formulas expressing such goals is not
evaluated on the planning domain, but on the execution structure of the
policy synthesized by the planning algorithm. In previous work we have
presented a new variant of ctl, named α-ctl, which semantics can be
defined directly on the planning domain. An advantage of this new logic
is that plan synthesis can be obtained as a collateral effect of verifying
the validity of a formula in the planning domain. In this paper we show
how to use α-ctl to express some complex planning goals.

1 Introduction

Traditionally, classical AI Planning assumes that agent’s actions have determin-
istic effects and that its goal is to reach a desired final state [9]. Although this
assumption can simplify the planning task [4], it almost never corresponds to
the reality. In practical applications of planning, actions have nondeterministic
effects and, due to this fact, we often need to impose conditions (extended goals)
that should be satisfied not only in the final state reached by the agent, but also
in all the states visited by it in order to achieve its goal.

In the model checking framework, the temporal logic ctl [7] has been the
preferred formalism to deal with nondeterminism; however, when this frame-
work is used for planning, it is not adequate to express many useful planning
goals (e.g., “try its best to achieve ϕ, while preserving φ” [2,15]). In view of this
limitation, a previous work [12] has proposed a planning algorithm to solve some
extended goals. However, because this algorithm requires goals being expressed
in an extra-logical language, it is difficult to combine it with results on tempo-
rally expressed goals from earlier works (e.g., [1,11]). Another recent work [3]
proposes a logical language, called p-ctl�, to specify extended goals. Although
this language is very expressive, allowing for the specification of extended goals
without leaving the temporal logic framework, no planning algorithm has been
presented so far [18].

In [15] we have proposed a new logic based on ctl, called α-ctl, that allows
us to specify extended goals and also to plan for them by using slightly modified
versions of the standard ctl model checking algorithms. With α-ctl, we have
not only a logical language to specify goals, but we can also derive algorithms

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 260–271, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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that are capable of planning for many intuitive and useful extended goals. The
proposed logic differs from other action logics found in literature, where formulas
impose constraints over states and also over actions [13,14]. Although actions
play an important role in the α-ctl’s semantics, they are not used in the for-
mula’s composition. Indeed, when we specify extended goals, we want to impose
constraints only over the states visited during plan execution and not over the
actions used to compose the plan.

In this paper we show how to use α-ctl to express some complex planning
goals, such as“try its best to achieve ϕ, while preserving φ”. Although this type of
goal has been described before in p-ctl�, we claim that our approach is simpler
and demands less computational effort because the universal quantification over
policies in p-ctl� is a costly operation.

The remainder of this paper is organized as follows. In Section 2, we briefly
present the background on planning based on model checking techniques and
emphasize the frailty of ctl, when it is used to formalize planning algorithms.
In Section 3, we present the syntax and semantics of the proposed logic α-ctl

and, in Section 4, we show how to specify goals in this new logic. In Section 5, we
compare some goal specifications in p-ctl� [3] with corresponding specifications
in α-ctl. Finally, in Section 6, we present our conclusions.

2 Planning Based on Model Checking

In this section we present the background on planning based on model checking,
where goals are expressed by ctl formulas. With this presentation, we aim (i)
to emphasize the frailty of the logic ctl, when it is used to formalize planning
algorithms, and (ii) to justify the need of the new proposed logic α-ctl.

2.1 Domains, Problems and Solutions

The key idea underlying planning based on model checking is to solve plan-
ning problems model-theoretically [10]. In this approach, a planning domain is
a nondeterministic finite state-transition system � � ��,�, � �, where � and �

are the nonempty sets of all possible states and actions in the domain, and �

is the state-transition function defined as � � � � � � 2� . A planning prob-
lem in a planning domain � is defined by an initial state s0 � � and by a
set of goal states � � �. A policy (or plan) π � � � � is defined as a par-
tial function from states to actions. The set �π of states reached by a policy
π is �s � �s, a� � π� � �s� � �s, a� � π and s� � � �s, a��. Given a policy π, the
corresponding execution structure �π is the subsystem of �, with �π as set of
states, containing all transitions induced by the actions in policy π. Given a
nondeterministic planning problem, we have three kinds of solutions:
– a weak solution is a policy that may achieve the goal, but due to nondeter-

minism, is not guaranteed to do so. A policy π is a weak solution if some
path in �π, starting from s0, reaches a state in � [5].
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– a strong solution is a policy that always achieves the goal, in spite of non-
determinism. A policy π is a strong solution if the subsystem �π is acyclic
and all paths starting from s0 reach a state in � [6].

– a strong-cyclic solution is a policy that always achieves the goal, under the
assumption that execution will exit from all cycles. A policy π is a strong-
cyclic solution if all paths in �π starting from s0 reach a state in � [8].

2.2 The Branching Time Temporal Logic ctl

The language of ctl [7] is defined over an alphabet P of atomic propositions
and the symbols � (next), � (invariantly), ♦ (finally) and � (until), combined
with quantifiers � and �, are used to represent temporal operators. The syntax
of ctl is inductively defined as ϕ ��� p � P � �ϕ � ϕ 	ϕ� � ��ϕ � ��ϕ � ��ϕ�ϕ��,
and some useful abbreviations are:

φ 
 ϕ � ���φ 	 �ϕ�
�♦ϕ � ��� � ϕ�
�♦ϕ � ��� � ϕ�
� � ϕ � �� � �ϕ
��ϕ � ��♦�ϕ
��φ � ϕ� � �����ϕ � ��φ 
 ϕ�� 	 ����ϕ�

The semantics of ctl is defined over a Kripke structure � � ��, � ,��, where �
is the set of states, � � � �� is the state transition relation and � � � � 2P is the
state labeling function. A path in � is a sequence of states s0, s1, . . . such that
si � � and �si, si�1� � � , for all i � 0. Given � and s0 � �, the ctl satisfiability
relation is defined as:

��, s0� � p iff p � ��s0�;
��, s0� � �ϕ iff ��, s0� � ϕ;
��, s0� � �φ 	 ϕ� iff ��, s0� � φ and ��, s0� � ϕ;
��, s0� � � � ϕ iff there exists a path s0, s1, . . . in � such that ��, s1� � ϕ;
��, s0� � ��ϕ iff there exists a path s0, s1, . . . in � such that ��, si� � ϕ,

for i � 0;
��, s0� � ��φ � ϕ� iff there exists a path s0, s1, . . . in � such that there exists

i � 0 for which ��, si� � ϕ
�, and for 0 � j � i, ��, sj� � ϕ.

2.3 Goal Specification Using ctl

By using ctl it is possible to express goals that take into account nondetermin-
ism [16,17]. In this approach, we consider that states in the planning domain
� are labeled with subsets of 2P. Let g � P be an atomic proposition holding
only on goal states � � �s � � � g � ��s��. It is possible to specify the following
reachability goals:
– �♦g: requiring a weak solution;
– �♦g: requiring a strong solution; and
– ���♦g: requiring a strong-cyclic solution.
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Let � � ��, s0, ϕ� be a planning problem, where � is a planning domain, s0 is
an initial state and ϕ is a goal specified in ctl. Let π be a policy in �. Thus, π
is a solution to � if and only if ��π, s0� � ϕ, where the execution structure �π
is interpreted as a Kripke structure. The semantics of ctl can be easily used to
formalize algorithms to perform plan validation. However, it is not clear how we
can derive the policy π for ϕ directly from the semantics of ctl.

3 The New Branching Time Temporal Logic α-ctl

To motivate the need of a new temporal logic for planning based on model
checking, we start with a simple example.

s1 � p s1 � p

�a� s0 � p
a0 ��

a0

�����������

a1

��

s2 � p �b� s0 � p
a0 ��

a0

�����������
s2 � p

s3 � p

Fig. 1. A planning domain �1 and the execution structure �1
π , for policy π � ��s0, a0��

Example 1. Consider the domain �1 (Fig. 1-a) and suppose that the goal is
necessarily to reach a successor of the state s0 where property p holds. In ctl,
this goal is expressed by the formula �� p and a state satisfies this formula only
if all its successors satisfy p; therefore, we have that ��1, s0� � ��p. Thus, even
though the action a0 can necessarily lead to a state where p holds, according to
the ctl’s semantics, the planning goal cannot be achieved. Now, if we consider
the policy π � ��s0, a0�� and the corresponding execution structure �1

π (Fig. 1-b),
clearly, we have that ��1

π, s0� � � � p. �

With Example 1, we show that ctl is not adequate to formalize plan synthesis
algorithms (although it is adequate to formalize plan validation algorithms). We
claim that the inability of ctl to formalize synthesis algorithms is mainly due to
the fact that its semantics does not take into account the quality of transitions
(i.e., the actions that produce the transitions) and this is an essential information
in plan synthesis algorithms. To overcome this lack of expressiveness in ctl, we
propose a new branching time temporal logic, called α-ctl, where the actions
play a fundamental role in its formal semantics.

3.1 The Syntax of α-ctl

In ctl, a formula � �ϕ holds on state s if only if ϕ holds on all successors of s,
independently of the actions labeling the transitions from s to its successors. In
α-ctl, to enforce that actions play an important role, we use a different set of
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“dotted” symbols to represent temporal operators:  (next), � (invariantly), �
(finally) and � (until).

Definition 1 (α-ctl’s syntax). Let p � P be an atomic proposition. The syntax
of α-ctl is inductively defined as:
ϕ ��� p � �p � ϕ	ϕ� � ϕ
ϕ� � �ϕ � �ϕ � ��ϕ � ��ϕ � ��ϕ�ϕ�� � ��ϕ�ϕ��

�

According to the α-ctl’s syntax, well-formed formulas are in negative normal
form, i.e., the scope of negation is restricted to the atomic propositions (this
allows us to define a fixpoint semantics for the formulas). Furthermore, all tem-
poral operators are prefixed by a path quantifier (� or �). The temporal operators
derived from � are � � ϕ � ��� � ϕ� and � � ϕ � ��� � ϕ�.

Although actions are essential in the semantics of α-ctl, they are not used
to compose the formulas. Indeed, when we specify a planning goal, we wish
to impose constraints only over the states visited during the execution of the
policy. In general, constraints over the actions that will be used to compose a
plan are not relevant when we specify the planning goal. For this reason, actions
logics ([13], [14]), which allows constraints over actions, are also inadequate to
formalize plan synthesis algorithms.

3.2 The Models in α-ctl

A model in α-ctl is a Kripke Transition System (kts). Intuitively, a kts is a
generalization of Labeled Transitions Systems (i.e., diagrams with labeled tran-
sitions) and Kripke Structures (i.e., diagrams with labeled states). Let P be a
finite set o atomic propositions and let A be a finite set of actions containing the
trivial action τ . In a kts with signature �P,A�, states are labeled with subsets
of P and transitions are labeled with elements of A.

Definition 2 (α-ctl’s model). A Kripke Transition System (kts) with signature
�P,A� is a structure � � ��,�, � �, where:
– � � � is a finite set of states;
– � � � � 2P is a state labeling function;
– � � � � A � 2� is a transition labeling function. �

We assume that � � ��s�, for all state s � �, and that � is a total function (all
states have a reflexive transition labeled with action τ , such that � �s, τ� � �s�).
The justification for these reflexive transitions is that, being � a temporal
model for α-ctl’s formulas, terminal states in this model should persist in-
finitely in time. Given two states s, s� � � and an action α � A, we say that
s� is a α-successor of s if s� � � �s, α�. The set of α-successors of s is denoted
by � �s, α�.

Definition 3 (preimage). Let Y � � be a set of states. The weak preimage of
Y , denoted by � �

�
�Y �, is the set �s � � � �α � A.� �s, α� � Y � �� and the strong

preimage of Y , denoted by � �

�
�Y �, is the set �s � � � �α � A.� � � �s, α� � Y �. �
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3.3 The Semantics of α-ctl

Intuitively, a state s satisfies a formula �ϕ (or �ϕ) if exists an action α that,
when executed in s, necessarily (or possibly) reaches an imediate successor of s
which satisfies the formula ϕ. In other words, the modality  represents the set
of α-successors of s, for some particular action α; the quantifier � requires that
all these α-successors satisfy ϕ; and the quantifier � requires that some of these
α-successors satisfy ϕ.

For example, consider again the domain�1(Fig. 1-a). In this domain, � �s0, a0�

� �s1, s2� and both states s1 and s2 satisfy p. Thus, by the α-ctl’s semantics it
follows that ��1, s0� � �  p (note that by the ctl’s semantics, we would have
��1, s0� � � � p). Furthermore, in α-ctl we can have both ��1, s0� � �  p
and ��1, s0� � �  �p, at the same time. This is possible due to the fact that
each occurrence of the modality  can instantiate a different action α and,
consequently, the quantification can be made over different sets of α-successors
of the state s0. However, the fact ��1, s0� � �  p 	 �  �p does not mean there
exists a policy to achieve both subgoals at the same time; it only means that
from state s0 we can choose to achieve p or �p.

The semantics of the global temporal operators (� and �) is derived from the
semantics of the local temporal operator , by using least fixpoint operations
(μ) and greatest fixpoint operations (ν).

Definition 4 (Formula’s intension). Let � � ��,�, � � be a kts with signature
�P,A� and let p � P be an atomic proposition. The intension of an α-ctl formula
ϕ in � (i.e., the set of states satisfying ϕ in � ), denoted by �ϕ��, is defined as:

– �p�� � �s � p � ��s��
– ��p�� � � � �p��
– �ϕ 	 ϕ�

�� � �ϕ�� � �ϕ�
��

– �ϕ 
 ϕ�
�� � �ϕ�� � �ϕ�

��

– ��  ϕ�� � � �

�
��ϕ���

– ��  ϕ�� � � �

�
��ϕ���

– ��� ϕ�� � νY.��ϕ�� � � �

�
�Y ��

– ��� ϕ�� � νY.��ϕ�� � � �

�
�Y ��

– ���ϕ � ϕ���� � μY.��ϕ�
�� � ��ϕ�� � � �

�
�Y ���

– ���ϕ � ϕ���� � μY.��ϕ�
�� � ��ϕ�� � � �

�
�Y ��� �

Definition 5 (α-ctl’s semantics). Let � � ��, 	, � � be a kts with signature
�P,A�, s � � be a state in � and ϕ be an α-ctl formula. The α-ctl’s satisfia-
bility relation is defined as: ��, s� � ϕ� s � �ϕ�� �

The notion of intension of a formula ϕ can be reformulated such that �ϕ�� turns
out to be a subsystem of � containing all the states satisfying ϕ, as well as all
transitions considered during the selection of these states (we need essentially to
redefine preimage functions such that they collect the pair �s, a�, whenever the
action a is considered to show that s satisfies the property ϕ). Note that with this
reformulatiom we can synthesize plans as a collateral effect of the verification of
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property ϕ in the system �. Therefore, a planning algorithm for extended goals
expressed in α-ctl can be formalized through the definition of this new notion
of �ϕ�� . Indeed, we have implemented a simple prototype of a planning system
by codifying α-ctl’s semantic rules directly in Prolog.

4 Goal Specification in α-ctl

As an example, consider the planning domain �2 (Fig. 2), adapted from [3].
Also, consider the following policies in this domain:

π1 � ��s0, a�, �s1, a�, �s3, b��
π2 � ��s0, a�, �s1, a�, �s3, c��
π3 � ��s0, a�, �s1, b�, �s3, b��
π4 � ��s0, a�, �s1, b�, �s3, c��

s
0

s
1

s

s
2

3

a

a

a
a

b

s
4

a

b

c

b

b

Fig. 2. The planning domain �2, where s4 is the only state that satisfies property g

Now, suppose that the agent is initially in state s0 and that its goal is to
try its best to reach a state satisfying the property g, i.e., � � �g��2 � �s4�.
Clearly, if we specify this goal by the formula � � g (strong planning), it turns
out to be unachievable from the state s0. Due to nondeterminism, after the
execution of action a in the state s0, we cannot guarantee that a goal state
still can be reached (e.g., action a can lead to state s2). The same happens if
we specify the goal by the formula � � � � p (strong-cyclic planning). On the
other hand, if the goal is specified by the formula � � g (weak planning), the
policy π1 � ��s0, a�, �s1, a�, �s3, b�� could be considered as solution. However, by
following this policy, the agent is not trying its best. As we can see, the formulas
� � g, �� � � p and � � g are inappropriate to express the planning goal.

4.1 An Agent Who Tries Its Best

Starting from s0 (Fig. 2), the agent has to choose between to remain in the same
state (by selecting action τ) or to move to another state (by selecting action a).
Clearly, if the agent is trying its best, it should select action a. With this choice,
the agent does not guarantee to achieve the goal; however, at this point, this is
the best that it can do (there is no strong nor strong-cyclic solution from this
state and the agent should be “happy” with a weak solution). After executing
action a in s0, the agent can reach one of these states:
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– s1: from this state, the best choice is action b, which always maintains the
possibility of reaching the goal (i.e., the agent prefer a strong-cyclic solution);

– s2: from this state, the agent can no longer reach the goal;
– s3: from this state, the best choice is action c, which will necessarily reach

the goal (i.e., from this state, the agent should prefer a strong solution).

In other words, if the agent is trying its best, it should consider the policy
π4 � ��s0, a�, �s1, b�, �s3, c�� as the only possible solution to the planning problem
of “try its best to achieve g”.

Through this example we can see that when an agent is trying its best, it
should alter its expectation during planning [3]. The question is how we can
express the planning goal so that the agent can alter its expectation during the
process of planning trying to do its best. By expressing the goal as �� g, we do
not allow that the agent alters its expectation: it will be always satisfied with a
weak solution, even if a strong or a strong-cyclic solution exists. On the other
hand, by expressing the goal as �� g or �� �� g, there is no solution from s0.

4.2 Specifying “Try Its Best to Achieve g” in α-ctl

For now, let’s forget about the initial state and consider goal states in system �2,
denoted by �g��2 . From each state in this system, we can try to find a strong policy
to reach states in �g��2 . This can be done by considering the subsystem1

���g��2

(Fig. 3-a). Next, from each remaining state in the system (i.e., states that do not
appear in �� � g��2), we can try to find strong-cyclic policies. Analogously, this
can be done by considering subsystems �����g��2 (Fig. 3-b) and �������g��2

(Fig. 3-c). Finally, we can try to find weak policies by considering the subsystem
����� ���� g��2 (Fig. 3-d). By proceeding in this way, we allow to the agent
to alter its expectation during the planning, given preference to better solutions.
An illustration of this policy synthesis process is given in Fig. 4. Now, in order
to check if there exists a solution from the initial state is enough to see if s0 �

�� � �� � � � � g��2 . Note that the subsystem �� � �� � � � � g��2 is exactly
the execution structure corresponding to the policy π4 � ��s0, a�, �s1, b�, �s3, c��,
which is the solution of the proposed planning problem.

s
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Fig. 3. Subsystems of �2 satisfying the formulas � � g, � � � � g, � � � � � � g and
� � �� � � � � g, respectively

1 According to α-ctl’s semantics, �g��2 � �� � g��2 , so even if there is no possible
extension of the subsystem �g��3 , we can still consider the subsystem �� � g��2 .
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5 Comparing Specifications in α-ctl and p-ctl�

In this section, we show how the extended goals discussed in [3] can be expressed
in α-ctl, with the advantage that we can also offer algorithms to solve them.

p-ctl� [3] extends π-ctl� [2] with quantification over policies (
� and ��).
Let p denote an atomic proposition, sf denote a state formula, and pf denote a
path formula. The syntax of p-ctl� is inductively defined as:

sf ��� p � sf 	 sf � sf 
 sf � �sf � Epf � Apf � Eπpf � Aπpf � 
�sf � ��sf
pf ��� sf � pf 	 pf � pf 
 pf � �pf � � pf � ♦pf � �pf � pf � pf

The state formulas’ semantics is defined w.r.t. a triple �sj, Φ, π�, where sj is a
state, Φ is the transition function, and π is a policy2. A policy π is consistent
w.r.t. to a transition function Φ if, for all states s, Φ�s, π�s�� is a nonempty set.

�sj , Φ, π� � p iff p is true in sj

�sj , Φ, π� � �sf iff �sj , Φ, π� � sf
�sj , Φ, π� � sf1 � sf2 iff �sj , Φ, π� � sf1 and �sj , Φ, π� � sf2

�sj , Φ, π� � sf1 � sf2 iff �sj , Φ, π� � sf1 or �sj , Φ, π� � sf2

�sj , Φ, π� � Epf iff there exists a path σ in Φ starting from sj such that
�sj , Φ, π, σ� � pf

�sj , Φ, π� � Apf iff for all paths σ in Φ starting from sj we have �sj , Φ, π, σ� � pf
�sj , Φ, π� � Eπpf iff there exists a path σ in Φ starting from sj consistent with π

such that �sj , Φ, π, σ� � pf
�sj , Φ, π� � Aπpf iff for all paths σ in Φ starting from sj consistent with π we have

that �sj , Φ, π, σ� � pf
�sj , Φ, π� � ��sf iff there exists π� consistent with Φ such that �sj , Φ, π�� � sf
�sj , Φ, π� � ��sf iff for all π� consistent with Φ we have that �sj , Φ, π, σ� � sf

The path formulas’ semantics is defined w.r.t. tuple �sj , Φ, π, σ�, where sj , Φ and π are
as before and σ in an infinite sequence of states sj , sj�1, . . . , called a path.

�sj , Φ, π, σ� � sf iff �sj , Φ, π� � sf
�sj , Φ, π, σ� � �pf iff �sj , Φ, π, σ� � pf
�sj , Φ, π, σ� � sf1 � sf2 iff �sj , Φ, π, σ� � sf1 and �sj , Φ, π, σ� � sf2

�sj , Φ, π, σ� � sf1 � sf2 iff �sj , Φ, π, σ� � sf1 or �sj , Φ, π, σ� � sf2

�sj , Φ, π, σ� � �pf iff �sj�1, Φ, π, σ� � �pf
�sj , Φ, π, σ� � ♦pf iff �sk, Φ, π, σ� � pf , for some k � j
�sj , Φ, π, σ� � �pf iff �sk, Φ, π, σ� � pf , for all k � j
�sj , Φ, π, σ� � �pf1 � pf2� iff there exists k � j such that �sk, Φ, π, σ� � pf2, and

for all j � i � k, �si, Φ, π, σ� � pf1

By using p-ctl�, one can express some useful extended goals that cannot be
expressed in ctl. Examples of such goals (Fig. 2) are [3]:

– ϕs � Aπ��
�Aπ♦g � Aπ♦g�: this requires that all along the path following
the given policy, if there is a strong policy for g, then the policy chosen must
be a strong policy. Only the policies π2 and π4 can reach this goal.

2 As in ctl, the semantics of p-ctl� is defined over a given policy (= validation).
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– ϕc � Aπ��
�Aπ��Eπ♦g� � Aπ��Eπ♦g��: this goal requires that all along
the trajectory following the given policy, if there is a strong-cyclic policy
for g, then the policy chosen must be a strong-cyclic policy for g. Only the
policies π3 and π4 can satisfy this goal.

– ϕw � Aπ��
�Eπ♦g � Eπ♦g�: this requires that all along the path following
the given policy, if there is a policy that reaches g then the policy chosen
must make it. All the policies π1, π2, π3 and π4 can satisfy this goal.

– ϕb � ϕs 	 ϕc 	 ϕw: this goal requires that all along the trajectory following
the given policy, if there is a strong policy for g, then the policy chosen
must be a strong policy; else, if there is a strong-cyclic for g, then the policy
chosen must be a strong-cyclic policy; and else, if there is a policy that
makes g reachable then the policy chosen must make g reachable. This can
be considered as a formal specification of the goal “trying ones best to reach
g”. Only policy π4 can satisfy this goal.

In Table 1, we present the corresponding specifications of ϕs, ϕc, ϕw and ϕb in
α-ctl. Note that the p-ctl�’s semantics requires goals to be defined over given
policies, not giving a hint about how to select actions. On the other hand, in
α-ctl extended goals are expressed by only imposing constraints over states,
leaving the selection of actions for its semantics – a key feature to formalize a
planning algorithm. In fact, in right column of Table 1 we can see the policies
that have been synthesized by our α-ctl-planner for all the listed extended goals;
on that account, they are the same policies predicted by the work on p-ctl� [3].

Table 1. Correspondence between some specifications in p-ctl� and α-ctl

p-ctl� α-ctl Solution policies

ϕs � � � � g π2, π4

ϕc � � �� � � g π3, π4

ϕw � � g π1, π2, π3, π4

ϕb � � �� � � � � g π4

goal
strong

strong-cyclic
weak

decreasing preference

Fig. 4. Policy synthesis process

6 Conclusion

In previous work [15] we have proposed a new branching time temporal logic,
called α-ctl, where actions play a fundamental role in its formal semantics
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(something that we have not found through the literature so far). We argued
that by using α-ctl we can synthesize plans as a collateral effect of the verifi-
cation of a property ϕ (planning goal) in a system (planning domain) �. Thus
a planning algorithm for extended goals expressed in α-ctl can be directly for-
malized by the α-ctl’s semantic rules

In this paper we considered how to specify and solve some extended goals,
when nondeterministic actions are taken into account [17]. In particular, we have
considered goals such as “try your best to achieve . . . ”, for which our α-ctl

planner3 has synthesized the same policy predicted for the corresponding goal
in p-ctl� [3]. We believe that our approach is simpler and demands less compu-
tational effort than that proposed in [3], because the quantification over policies
in p-ctl� is a costly operation. Although in this paper we have establish an
intuitive comparison between specifications of extended goals in p-ctl� and the
corresponding specifications in α-ctl, our claim is that with our implemented
planner (i.e, the α-ctl-planner) we can synthesize plans for these type of goals,
while the p-ctl� we can only be used to verify plans for them.
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1 Introduction

It has been known for decades that Montague’s (1974 [1970]) possible-worlds se-
mantics, which follows Kripke 1963 in treating worlds as unanalyzed primitives
and propositions as sets of worlds, does not provide enough meaning distinctions
to make correct predictions about a wide range of natural-language entailment
patterns.1 This granularity problem, as it has come to be known, has many
dimensions, of which the best known is that two declarative sentences which
entail each other must express the same proposition. This is because entailment
is modelled by the subset inclusion relation on the powerset of the set of propo-
sitions, and that relation is irretrievably antisymmetric. The most notorious
consequence of this antisymmetry of entailment is the so-called logical omni-
science problem, that (assuming knowledge is a relation between individuals
and propositions) anyone who knows at least one necessary truth (e.g. that s/he
is self-identical, or that two is even) must know every necessary truth, even
an unresolved mathematical conjecture or its denial (whichever is true). Thus,
e.g. if Paris Hilton knows that Paris Hilton is Paris Hilton, then she must also
know that every nontrivial zero of the zeta-function has real part 1/2, if that is
indeed the case, or else she must know that this is not the case, if indeed it is
not. In short, it seems to be a consequence of MS that a celebrity hotel heiress
devoted to parties and shopping knows whether the Riemann Hypothesis is true.
This is just one of the unsavory consequences of MS.

From the point of view of MS, the most conservative response to Granularity,
and one which remains popular among linguistic semanticists, is to argue, along
the lines of Stalnaker (1984), that it is naive to perceive it as a real problem.
In effect, Paris Hilton really does either know that R or know that not R, she
just doesn’t know that she does. On the other hand, Granularity has been quite
widely viewed as a serious foundational problem, and a wide range of ingenious
1 For much useful discussion, some of it in the distant past, and comments on earlier

versions, I wish to thank David Dowty, Jonathan Ginzburg, Howard Gregory, Martin
Jansche, Brad Kolb, Tim Leffel, Scott Martin, Drew Moshier, Reinhard Muskens,
Andy Plummer, Phil Scott, and Ken Shan. For their help in providing the conditions
that made this research possible, I am grateful to Carlos Martin Vide, Philippe de
Groote, and the Department of Linguistics and College of Humanities of Ohio State
University. The research reported here was supported by grant no. 2006PIV10036
from the Agència de Gestió d’Ajuts Universitaris i de Recerca of the Generalitat de
Catalunya.
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and technically sophisticated replacements for MS have been proposed in re-
sponse. Among these, to mention just a few of the best known proposals, have
been have been Intentional Semantics (Thomason 1980), Situation Semantics
(Barwise and Perry 1983), and Property Theory (Chierchia and Turner 1988).
For summaries and critical assessment of these and other proposals, together
with a more sophisticated version of Property Theory, see Fox and Lappin 2005.

In general, these alternative proposals depart radically from MS, e.g. by em-
bracing impossible worlds in addition to possible ones; by countenancing not
just possible worlds but also partial possible worlds; by rejecting possible worlds
altogether; by working in a type theory that abandons one or more of the usual
structural rules; by moving from typed to untyped lambda calculus, etc. By con-
trast, the approach adopted here, described in detail in Pollard 2008, holds that
MS was close to the mark, and that a relatively minor repair job eliminates the
Granularity problem along with certain other of MS’s foundational problems.2

The repair involves five ideas, of which only the last two are original.
First, we must treat propositions as primitives, not as sets of worlds. In connec-

tion with natural-language semantics, this was already advocated by Thomason
(1980), though the philosophical roots of the idea can be traced back to Wittgen-
stein or perhaps even Bolzano.

Second, we must treat worlds not as primitives, but rather as ultrafilters over
the boolean structure on propositions. In some form or other, this battle-tested
idea is present in Adams (1974), Kripke (1959), Jónsson and Tarski (1951),
Carnap (1947), and Stone (1936,1937).

Third, the entailment relation on propositions must not be antisymmetric!
I am indebted to Howard Gregory3 for making me explicitly conscious of the
central and nonnegotiable character of this requirement.

Fourth, the boolean structure on propositions, in terms of which worlds are
defined as ultrafilters, has to be induced by the entailment relation on proposi-
tions. That is, rather than define entailment as subset inclusion of sets of worlds,
we axiomatize entailment to be a boolean preorder on the set of propositions.
Then, since the type theory we will work in has Choice4, it will follow from the
(internal) Stone Representation Theorem that this preorder really deserves to be
called entailment, in the sense that, for any two propositions p and q, p entails
q iff every ulrafilter with p as a member also has q as a member.

And fifth, the type theory must countenance a Separation-like notion of sub-
typing, along the lines of Lambek and Scott 1986. This will ensure that the
worlds, in spite of having been defined as ulrtafilters of propositions, constitute
a type of the underlying type theory. That is because the property of of being
an ultrafilter is an internally definable property of propositions. More specifi-
cally, we can write a formula (boolean term) u[S] (where S is a variable of the

2 Another approach that is similar in spirit, though not in technical detail, is that of
Muskens (2005). Unfortunately Muskens and I separately adopted the term “hyper-
intensional” for our approaches.

3 Personal communication to Shalom Lappin and me, 1999.
4 Actually, the Boolean Prime Ideal Theorem would be enough.
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type of sets of propositions) which says of S that it is an ultrafilter, and then
use that formula to form a subtype—call it World—of the type Prop ⊃ Bool.
This type will play a role in the semantic theory analogous in crucial respects to
that played by the world-type s in MS. However, unlike MS, meanings (includ-
ing propositions) will not be modelled as intensions (functions from worlds to
extensions), but rather as the considerably more fine-grained hyperintensions.

The purpose of this paper is to show how a semantic theory along these lines
sheds light on the understanding of questions, the meanings expressed by in-
terrogative sentences. Our questions will turn out to be closely related to the
two standard modellings of questions in the linguistic semantics literature, due
respectively to Karttunen (1977) (hereafter, K) and Groenendijk and Stokhof
(1984) (hereafter, G). The gist of the relationship is as follows. First, the hyper-
intensional theory of meanings has the property that it contains an ‘isomorphic
copy of MS’, together with a type-parametrized family of functions extA that
maps each each hyperintension to the corresponding Montagovian intension. In
general this function is many-to-one, but it becomes a bijection if we (perversely!)
add to our meaning theory an axiom that makes entailment antisymmetric. In
the special case of the type Prop of propositions, this function is just the Stone
function that maps each member of the preboolean algebra of propositions to
a clopen subset of the corresponding Stone space (the one whose members are
the ultrafilters of which that proposition is a member.) Under this mapping,
each hyperintensional question is mapped to a K-question intension. And the
corresponding G-question is in turn obtained from that, by taking the induced
equivalence relation on worlds.

Thus, our theory of meanings is a natural generalization of MS (dropping
the antisymmetry of entailment), and our theory of questions within it is a
natural generalization of the standard MS modellings of questions. The greater
generality will enable us to make finer-grained distinctions among questions than
the standard theories can make. For example, on K’s account (and therefore, on
G’s as well) these two complementized denote the same questions:

(1) a. whether Paris Hilton is Paris Hilton

b. whether Britney Spears is Britney Spears

But on our account (hereafter, H), they do not. And on G’s account, these
two questions are the same:

(2) a. Which students are vegetarians?

b. Which vegetarians are students?

but on our account they are distinct. The remainder of the paper is organized as
follows. In section 2, we describe the version of higher order logic (our counterpart
of Montague’s IL or Gallin’s Ty2) in which the theory of meanings is written.
Section 3 sketches the meaning theory itself, while section 4 deals with worlds and
extensions at them. Section 5 extends the meaning thory to include questions.
And in section 6, we conclude by showing how our theory of questions relates to
those of Karttunen and Groenendijk-Stokhof.
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2 Higher Order Logic (HOL) with Subtypes

We work in a classical HOL broadly similar to that of Henkin 1950 or Gallin
1975, but augmented with machinery for handling subtyping along the lines of
Lambek and Scott 1986. This logic is built on top of positive typed lambda cal-
culus (TLC) (positive in the sense that the underlying type theory is positive
intuitionstic propositional logic, so that we have the nullary type constructor T
(unit type) and product ∧ as well as the usual exponential ⊃). For the term
constructors, we write ∗ for the constant of type T, ( , ) for pairing, π and π′

for the projections, and f(a) for eval(f, a). As usual, we have the basic types Ent
(entities, corresponding to Montague’s e) and Bool (truth values, correspond-
ing to Montague’s t5). In addition we will have two basic meaning types Prop
(propositions, which will serve as the meanings of declarative sentences) and
Ind (individual concepts, which will serve as the meanings of names and other
expressions that refer to entities). We also have plenty of constants (see (20)
below).

To get from positive TLC to HOL, we follow Lambek and Scott and add an
equality symbol = A : (A ∧ A) ⊃ Bool for each type A, and then define the
usual logical connectives and quantifiers in terms of λ and equality, as shown in
the Appendix (13). There we also list some of the logical axioms (or theorems,
depending on the choice of axiomatization) of the HOL (14-18).

The crucial feature of our HOL, which will make it possible to internally define
a type for worlds (and later, as we will see, also for questions), is the machinery
for handling subtypes, adapted from Lambek and Scott 1986. The motivation
for this machinery is that the familiar HOLs employed in linguistic semantics
provide no way to say that A is a subtype of B. In a set-theoretic intepretation
I of the logic, this should mean I(A) ⊆ I(B).

(3) Subtypes (after Lambek and Scott 1986)
If A is a type and a an A-predicate (i.e. a closed term of type A ⊃ Bool),
then

a. Aa is a type

b. embeda is a term of type Aa ⊃ A; and

c. Axioms:

i. � ∀y,z∈Aa [(embeda (y) = embeda (z)) ⊃ y = z)]

ii. � ∀x∈A[a(x)↔ ∃y∈Aax = embeda(y)]

In a set-theoretic interpretation I of the logic, I(embeda) is the function that
embeds into I(A) the subset whose characteristic function is I(a).6

5 Or to Lambek and Scott’s Ω (subobject classifier). The name Bool will be justified
because the HOL of truth-value-typed terms will be classical, and correspondingly
the categorical models will be boolean toposes.

6 More generally, in a topos model, I(embeda) is the char of I(a).
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3 The Theory of Meanings

We now use our HOL to express a theory about the things that will serve as
meanings of (utterances of) natural language expressions. We call this a theory
of meanings, not a semantic theory, because we reserve the latter term for a
theory that connects linguistic expressions with their meanings. (Some aspects
of such a theory are developed in Pollard (2007, submitted, in preparation 1, in
preparation 2).

We start by recalling that our basic types are the two extensional types Ent
(entities) and Bool (truth values), and the two meaning types Ind (individual
concepts) and Prop (propositions). As we’ll see, entities are the kinds of things
that can be the extensions (at worlds) of individual concepts, and truth values are
the kinds of things that can be the extensions of propositions. Note that World
is not a basic type! Instead, World will be defined as the subtype of Prop ⊃ Bool
consisting precisely of the ultrafilters. This works because ultrafilterhood is an
internally definable property (see Appendix, (19).

We now define a certain set of types, the hyperintensional types, that will
serve as meaning types. This is the set obtained from the basic meaning types
Ind and Prop by closing under the TLC type constructors (T,∧,⊃) and subtype
formation. Intuitively, the things of these types are the things that have the po-
tential to be meanings. They play a role in our semantic theory analogous to the
role played by intensions in MS: they are mathematical models of Fregean senses.
(Unavoidably, we will have intensions as well; but we won’t use them to model
meanings.) Some illustrative examples of constants of various hyperintensional
types (corresponding to word meanings) are given in the Appendix (20).

Next, roughly following Montague, we definine a function Ext that assigns to
each meaning type the type for the corresponding extensions, i.e. any meaning
of type A will have, at each world, an extension of type Ext(A).

(4) Extensional Types

a. Ext(Prop) = defBool
b. Ext(Ind) = defEnt
c. Ext(T) = defT
d. Ext(A ∧ B) = defExt(A) ∧ Ext(B)
e. Ext(A ⊃ B) = defA ⊃ Ext(B)
f. Ext(Aa ) = defExt(A)

(5) Linguistic Consequences
At any world:

a. Declarative sentences denote truth values.
b. Names denote entities.
c. Dummy pronouns have vacuous reference.
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d. The list of complements of a verb denotes the ordered tuple of the
denotations the complements.

e. A verb that expresses a function from A’s to propositions denotes (the
characteristic function of) a set of A’s.

We now turn to the axiomatization of entailment, the binary relation between
propositions that semantics is centrally concerned with. We represent this rela-
tion by the constant |= of type (Prop ∧ Prop) ⊃ Bool. Loosely speaking, we
also say that one (utterance of a) declarative sentence entails another if the the
proposition it expresses entails the one expressed by the other. Of course ev-
ery sentence entails itself, and entailment is transitive, so we start with these
(nonlogical!) axioms:

(6) Preorder Axioms for Entailment

a. � ∀p(p |= p)
b. � ∀p,q,r (((p |= q) ∧ (q |= r)) ⊃ (p |= r))

We use the constant ≡ for mutual entailment:

(7) Mutual Entailment

a. � ∀p,q [(p ≡ q) = (p |= q ∧ q |= p)]
b. Nothing in our theory will let us prove

� ∀p,q [(p ≡ q) ⊃ (p = q)

That is, entailment is not antisymmetric.
We now introduce the constants Truth : Prop, Falsity : Prop, not’ : Prop ⊃

Prop, and’ : (Prop ∧ Prop) ⊃ Prop, or’ : (Prop ∧ Prop) ⊃ Prop, and implies’ :
(Prop ∧ Prop) ⊃ Prop. These will be interpreted as the operations in the pre-
boolean algebraic structure induced by entailment on the set of propositions. As
the spelling suggests, some of these operations will also serve as the meanings of
the English “logic words” (see Appendix (21) for details). These are axiomatized
(Appendix (22)) so that, in an interpretation, the propositions preordered by en-
tailment form a preboolean algebra (roughly, a boolean algebra without antisym-
metry, i.e. the usual boolean facts obtain, but with equality replaced by mutual
entailment). These axioms essentially say that the usual natural deduction rules
of classical propositional logic are valid for natural language argumentation.

4 Worlds and Extensions at Them

So far we have not brought worlds into our theory of meanings. In fact, our
view is that worlds are not relevant to meaning: meanings are “out there” (in
Frege’s Heaven, if you will) and are independent of contingent fact. On the
other hand, we must get involved with worlds to deal with reference; since the
reference of a linguistic expression is the extension of its meaning, and what that
extension is does depend on how things are. The most obvious example of this is
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that the reference of a declarative sentence is the extension—a truth value—of
the proposition it expresses. Fortunately, for us, a world will just be a set of
propositions (more specifically, an ultrafilter of the preboolean algebra induced
by entailment), and so for that proposition to be true at a given world is simply
to be a set-theoretic member of it. This turns MS on its head, since there a
proposition is true at a world if the world is a member of it.

Now pretheoretically, for p to entail q is supposed to mean that, no matter
how things are, if p is true when things are that way, then so is q. So for this to be
the case in our framework, it must be the case that p entails q iff every ultrafilter
with p as a member also has q as a member. Fortunately for us, this is a theorem
of ZFC, not about entailment specifically of course, but about any preboolean
algebra (in our setting, the preorder is entailment). In fact this is just a slight
generalization (dropping the antisymmetry requirement) of the Boolean Prime
Ideal (BPI) Theorem, the key ingredient of Stone’s Representation Theorem for
boolean algebras. Of course, we are not working in ZFC; but there are topos-
theoretic versions of Choice appropriate to the kind of HOL we are working in,
and once we add one, we are home free. To summarize, once we add a suitable
form of Choice to our axioms, we can prove an internal version of BPI, and this
will guarantee that entailment, by virtue of being a boolean preorder, really does
behave the way that, pretheoretically, we expect entailment to behave.

We express the connection between hyperintensions, worlds, and extensions
using a family of constants extA of type A ⊃ (World ⊃ Ext(A)), where A ranges
over the hyperintensional types. A full account is given in Pollard 2008, but the
three key cases are these:

(8) Extensions at Worlds

� ∀p,w [extProp(p)(w) = p@w]

� ∀w,z [extA∧B(z)(w) = (extA(π(z))(w), extB (π′(z))(w))]

� ∀w,f [extA⊃B (f)(w) = λx∈AextB(f(x))(w)]

Here p@w abbreviates emb(w)(p), where emb is the term constructor (from the
subtyping schema) that denotes the subtype embedding of World into Prop ⊃
Bool.7 Note that extProp denotes the Stone embedding (the function that maps
each element of a preboolean algebra to the set of ultrafilters of which it is a
member); that is, ext extends Stone duality from just propositions to all meaning
types.

5 Questions in a Hyperintensional Setting

Our modelling of questions is inspired by Kartunnen’s (1977) idea that the ex-
tension of a question at a world is the set of its true answers there. That is,
whatever the type of questions is—for now let’s just call it Que—the corre-
sponding extensional type should be sets of propositions, i.e. Ext(Que) should

7 This is how to say in this kind of HOL that p is a member of w.



Hyperintensional Questions 279

be Prop ⊃ Bool. Correspondingly, Que should be Prop ⊃ Prop or some subtype
thereof. In short, questions are (certain) propositional operators.

To start with the easy case, how should we analyze yes/no questions, or em-
bedded whether-questions? (We will analyze root and embedded interrogatives
the same way, for both polar and consituent questions.) On Kartunnen’s account,
the extension at w of whether’(p) is the singleton set whose only member is either
p or its denial, whichever is true at w. Thus, e.g. Is Bush crazy, or equivalently
whether Bush is crazy, denotes the singleton of the proposition that Bush is crazy
in worlds where he is, and the singleton of the proposition that he isn’t in worlds
where he isn’t. We accept this analysis, except that for us the question itself
has to be a hyperintension rather than an intension. The key ingredient in our
analysis is the meaning whether’ of the interrogative complementizer whether,
for which we give the following meaning postulate:

(9) Meaning Postulate for Whether
� whether’ = λp′λp [p and’ ((p equals’ p′) or’ (p equals’ not’(p′)))]

Here equals’ is the constant whose interpretation is the meaning of the verb
equals, which refers to true equality (Appendix (23).

(10) Example (Polar Question)

a. Is Bush crazy?/whether Bush is crazy

b. Meaning:
λp [p and’ ((p equals’ crazy’(Bush’)) or’ (p equals’ not’(crazy’(Bush’))))]

c. Extension at w:
λp [p@w ∧ ((p = crazy’(Bush’)) ∨ (p = not’(crazy’(Bush’))))]

What about constituent questions, such as which dog barked? For Karttunen,
the extension at w is the set of all propositions true at w of the form barked’(x) for
x an individual such that dog’(x) is true at w. That is, Kartunnen-extensions
for constituent questions contain only positive true answers. As discussed in
Pollard ms. 2, we propose to include also the negative true answers; that is, in a
world where Fido barks and Spot doesn’t, the extension of the ‘plus-or-minus’
K- (hereafter, K±) question will have as members, possibly inter alia, both
the proposition that Fido barks and the proposition that Spot doesn’t bark.
The essence of this analysis is captured in our semantics for the interrogative
determiner which:

(11) The Meaning of which

� which’ = λPλQλpexists’(P )(λx ((whether′(Q(x))(p))))
Here x : A for A a hyperintensional type; P,Q : A ⊃ Prop;, and p : Prop.

Then our analysis of a simple consituent question looks like this;



280 C. Pollard

(12) Example (Constituent Question)

a. Which dogs bark?
b. Meaning: which′(dog’)(bark’)
c. Expanding the abbreviation: λp [exists’(dog’)(λx (p and’ ((p equals’

bark’(x))or’ (p equals’ not’(bark’(x))))))]
d. Extension at w:
λp [∃x [dog’(x)@w ∧ (p@w ∧ ((p = bark’(x)) ∨ (p = not’(bark’(x)))))]

Here the constant exists’ denotes the hyperintensional counterpart of the usual
existential generalized determiner. (Meaning postulates for some representative
hyperintensional generalized determiners are given in the Appendix (24).) The
upshot is that, at each world w, the reference of the interrogative sentence which
dogs bark is the range of the function that maps each w-dog to the proposition
which correctly answers, for w, the question of whether or not s/he barks.

6 What Have We Gained? What Have We Lost?

We have developed a new modelling of questions within a fine-grained theory of
linguistic meanings, a theory which was independently motivated by a number
of long-standing problems not specifically connected with questions. And this
modelling in turn permits us to distinguish questions from each other in an
appropriately more fine grained way.

For example, suppose S1 and S2 are English sentences that express mutually
entailing but nonidentical propositions. It seems clear that one might wonder
whether S1 without wondering whether S2 . This is problematic for MS, but
not for us, because it is easy to show that the function denoted by whether’ is
injective.

Next, consider a constituent interrogative embedded under a “question-resol-
ving” verb, e.g. Mary knows (in precise detail) which students in Linguistics 680
are vegetarians. For this to be true, Mary needs to know, at minimum, for each
Linguistics 680 student, whether or not s/he is a vegetarian. But she does not
need to know, for each vegetarian, whether or not s/he is taking Linguistics 680.
And it would seem that a minimum requirement for predicting this fact must be
that the two sentences in (2) express different questions. The G-semantics does
not meet this requirement, but the K±-semantics (both in its original form and
in the hyperintensional generalization) does.

To summarize, the hyperintensional semantics of questions generalizes the
K±-semantics, in the sense that for any hyperintentensional question, the corre-
sponding K±-question (should it be needed) is its Stone dual, directly obtainable
by application of ext. Moreover, recalling that for any function f , the induced
equivalence relation on the domain is the relation of being mapped to the same
value by f , it is not hard to see (Pollard ms. 2) that the corresponding G-question
is exactly the equivalence relation on worlds induced by the K±-question. So it
too is easily recovered if needed. Thus, nothing is lost in comparison with the
traditional accounts.
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Appendix

(13) Classical Connectives and Quantifiers are Definable
Here φ and ψ are metavariables over formulas, x is a variable of type A,
and t is a variable of type Bool:

a. true = def∗ = ∗;
b. ∀xφ = defλxφ = λx true;

c. false = def∀t t
d. φ ∧ ψ = def(φ, ψ) = (true, true);

e. φ ⊃ ψ = defφ = (φ ∧ ψ);

f. φ↔ ψ = def [(φ ⊃ ψ) ∧ (ψ ⊃ φ)];

g. ∼ φ = defφ ⊃ false;

h. φ ∨ ψ = def ∼ [(∼ φ) ∧ (∼ ψ)]; and

i. ∃xφ = def ∼ ∀x ∼ φ.

(14) Equality is an Equivalence Relation
In the following,α, β, γ, δ are metavariables over terms, andφ, ψ are metavari-
ables over formulas,

a. � α = α (reflexivity)

b. � (α = β)↔ (β = α) (symmetry)

c. � [(α = β) ∧ (β = γ)] ⊃ (α = γ) (transitivity)

(15) Substitution of Equals

a. � [(α = γ) ∧ (β = δ)] ⊃ ((α, β) = (γ, δ))

b. � [(α = γ) ∧ (β = δ)] ⊃ (α(β) = γ(δ))

c. � (α = β) ⊃ (π(α) = π(β)

d. � (α = β) ⊃ (π′(α) = π′(β)

e. � (α = β) ⊃ (λxα = λxβ)
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(16) Axioms for Cartesian Products

a. � α = ∗ (α a term of type T)
b. � π(α, β) = α

c. � π′(α, β) = β

d. � (π(γ), π′(γ)) = γ

(17) Axioms for Lambda Conversion

a. � λx∈Aγ[x] = λy∈Aγ[y] if y is substitutable for x in γ (Rule α)
b. � [λx∈Aγ[x]](a) = γ[a] if a is substitutable for x in γ (Rule β)
c. � λx (α(x)) = α if x is not free in α (Rule η)

(18) Axioms for Boolean Equality

a. � φ = (φ = true)
b. If � φ and � φ = ψ, then � ψ
c. � φ iff � φ = true

d. � ∀s,t [(s↔ t) ⊃ (s = t)] (Boolean Extensionality)

(19) Ultrafilterhood is Definable

a. u is λS [a(S) ∧ b(S) ∧ c(S) where
i. a(S) says S is closed under entailment;

ii. b(S) says s is closed under and’; and
iii. c(S) says that for each proposition p, exactly one of p and (not’p) is

in S.
b. To be explicit:

i. a(S) is ∀(p,q)[(S(p) ∧ p |= q) ⊃ S(q)];
ii. b(S) is ∀(p,q)[(S(p) ∧ S(q)) ⊃ S(p and’ q)]; and
iii. c(S) is ¬S(falsity’) ∧ ∀p(S(p) ∨ S(not’ p)).

(20) Some Constants for Word Meaning

a. Ind: names, e.g. Fido’

b. T: dummy pronouns. Up to provable equality, the only closed term of
this type is ∗.

c. T ⊃ Prop: intransitive verbs with dummy subjects, e.g. rain’

d. Ind ⊃ Prop: ordinary intransitive verbs and common nouns, e.g. dog’,
bark’

e. (Ind ∧ Ind) ⊃ Prop: transitive verbs, e.g. bite’

f. (Ind ∧ Ind ∧ Ind) ⊃ Prop: ditransitive verbs, e.g. give’

g. (Ind ∧ Prop) ⊃ Prop: verbs with declarative sentential complements,
e.g. believe’

h. ((Ind ⊃ Prop) ∧ (Ind ⊃ Prop)) ⊃ Prop : (individual) determiners,
e.g. every’.
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(21) Boolean Operations on Propositions

a. Truth : Prop will be interpreted as , the designated top.
b. Falsity : Prop will be interpreted as ⊥, the designated bottom.
c. not’ : Prop ⊃ Prop will be interpreted as ¬, the designated complement

operation.
d. and’ : (Prop ∧ Prop) ⊃ Prop will be interpreted as �, the designated

glb operation.
e. or’ : (Prop ∧ Prop) ⊃ Prop will be interpreted as �, the designated lub

operation.
f. implies’ : (Prop ∧ Prop) ⊃ Prop will be interpreted as⇒, the designated

relative complement operation.

(22) Preboolean Axioms for Entailment

a. � ∀p(p |= Truth)
b. � ∀p(Falsity |= p)
c. � ∀p,q((p and’ q) |= p)
d. � ∀p,q((p and’ q) |= q)
e. � ∀p,q,r [((p |= q) ∧ (p |= r)) ⊃ (p |= (q and’ r))]
f. � ∀p,q(p |= (p or’ q))
g. � ∀p,q(q |= (p or’ q))
h. � ∀p,q,r [((p |= r) ∧ (q |= r)) ⊃ ((p or’ q) |= r)]
i. � ∀p,q [(p implies’ q) and’ p) |= q]
j. � ∀p,q,r [((r and’ p) |= q) ⊃ (r |= (p implies’ q))]
k. � ∀p((not’ p) ≡ (p implies’ Falsity))
l. � ∀p [(not’ (not’ p)) |= p]

(23) Three Grades of Equality
Three families of constants of type (A ∧ A) ⊃ Prop (for A ∈HYPER):

a. equalsA is interpreted as the meaning of the verb equals. This has ‘true
equality’ as its extension, as expressed in this meaning postulate:

� ∀w,x ,y [(x equals y)@w = (x = y)]
b. equivA is interpreted as the meaning of the term-of-art is hyperinten-

sionally equivalent to, subject to the meaning postulate.

� ∀w,x ,y [(x equiv y)@w = ∀w ′(ext(x)(w′) = ext(y)(w′))]
c. coextA is interpreted as the meaning of the term-of-art is coextensive

with, subject to the meaning postulate:

� ∀w,x ,y [(x coext y)@w = (ext(x)(w) = ext(y)(w))]
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(24) Hyperintensional Generalized Determiners

a. Constants:
� every’A, exists’A, no’A : ((A ⊃ Prop) ∧ (A ⊃ Prop)) ⊃ Prop

b. Meaning postulates:

� ∀w,P ,Q [every’(P,Q)@w = ∀x (P (x)@w ⊃ Q(x)@w)]

� ∀w,P ,Q [exists’(P,Q)@w = ∃x (P (x)@w ∧ Q(x)@w)]

� ∀w,P ,Q [no’(P,Q)@w = ∼∃x (P (x)@w ∧ Q(x)@w)]
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Abstract. Several authors proposed to import in Natural Language
(NL) the ideas lying behind the well-known Skolem Theorem, defined
in standard logic. In these proposals, logical forms aiming at capturing
the meaning of NL sentences include referential (functional) terms. Nev-
ertheless, whether referentiality is allowed for non-indefinites NPs, two
main problems arise: the need to refer to the maximal sets of entities in-
volved in the predications, and the need to cope with readings where two
or more sets of entities are introduced at the same level of scope and have
to be evaluated in parallel. Particularly problematic is the representa-
tion of sentences featuring nested quantifications. The paper shows how
it is possible to incorporate referential terms in the standard Generalized
Quantifier account in order to properly deal with nested quantifications.

1 Introduction

The existence of quantifier scope ambiguities in Natural Language (NL) is ac-
cepted as a standard by the scientific community. An example is shown in (1)

(1) a. Every man heard a mysterious sound.
b. ∃y(mystSound′(y), ∀x(man′(x), heard′(x, y)))
c. ∀x(man′(x), ∃y(mystSound′(y), heard′(x, y)))

(1.a) is ambiguous between two (distributive) readings, represented, in the stan-
dard Generalized Quantifier (GQ) account ([16], [1]), as in (1.b-c). ∃ and ∀ are
2-place GQs, i.e. functions of type 〈〈e, t〉, 〈〈e, t〉, t〉〉. In a model M with domain
E, ‖∃‖M and ‖∀‖M respectively assign, to each A ⊆ E, the family of all subsets
of E including at least one element of A, and the the family of all subsets of E
including all elements of A. (1.b) is true iff a particular sound was heard by all
men, while (1.c) is true iff each man heard a (potentially different) sound.

A different approach relies on the assumption that some\all NPs are referen-
tial in nature, i.e. they do not denote GQs of type 〈〈e, t〉, 〈〈e, t〉, t〉〉 but functional
terms of type e, 〈e, e〉, 〈e, 〈e, e〉〉, etc. This approach is clearly reminiscent of the
well-known Skolem theorem, whose application substitutes all existential quan-
tifications by functional terms, which are existentially quantified. For example,
the two readings of (1) are represented as (2.a) and (2.b) respectively

(2) a. ∃f0∀x[mystSound′(f0) ∧ [man′(x)→ heard′(x, f0)]]
b. ∃f1∀x[man′(x)→ (mystSound′(f1(x)) ∧ heard′(x, f1(x)))]

W. Hodges and R. de Queiroz (Eds.): WoLLIC 2008, LNAI 5110, pp. 286–297, 2008.
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In (2.a), f0 refers to a particular mysterious sound that was heard by every man.
Conversely, in (2.b) f1 is 1-ary function that denotes a functional dependency
from men to sounds: given a man x, f1(x) refers to the sound heard by x.

Several attempts have been made to incorporate Skolem theory in the stan-
dard GQ account. [6], [24], [5], and [25] propose the use of Skolem function for
properly dealing with the semantics of indefinitives. Conversely, [20], [2], [18],
[21], [22], and [19] argue in favour of a view where (almost) all NPs are repre-
sented via a referential term. Nevertheless, by allowing referential interpretations
of non-indefinites NPs, two main problems arise. First, a standard model theory
basically predicts the correct truth conditions only if all involved quantifiers are
upwards monotone (M↑). Conversely, the truth values may be wrong whenever
referential terms feature different monotonicities1. Second, this move enables the
representation of readings where two or more sets of entities are introduced at
the same level of scope; an example, taken from [3], is reported in (3)

(3) Two examiners marked six scripts.

If we allow both NPs to receive wide scope, we get a reading where there is
a set of two examiners and a set of six scripts and each of the two examiners
marked each of the six scripts. Readings like this are known with the term of
“Branching Quantifier” readings. Branching Quantification was introduced by
[10] in the context of FOL; afterwards, [11] showed that it can also occurs in NL,
and [13], [23], [20], [9], [21], [4] provided further evidence for this claim.

The term “Branching Quantifier readings” is misleading, in that it refers to a
formalization that is independent of the meaning it aims to capture. In [21], those
reading are handled by referential terms rather than by branching quantifiers.
Analogously, [2] represents the reading under exam as in (4)

(4) (∃E:2(examiner))(∃S:6(script))(∀e:E)(∀s:S) marked(e, s)

Without wanting to touch upon the debate about which terminology should be
used, in order to avoid confusion I will refer to the readings where two or more
sets of entities are introduced at the same level with the expression “Independent
Set” (IS) readings. The existence of IS readings in NL has been, by and large,
neglected in the recent literature. Section 2 briefly fleshes out the motivations for
considering them as autonomous readings, worth of an explicit representation.
Afterwards, I will present an extention of [21] that acts as a uniform device for
all those theories where some or all NPs are referentially interpreted.

2 Are Independent Set Readings Really Available in NL?

It may be argued that IS readings can be pragmatically inferred from other
available readings. For example, it is easy to see that all models satisfying (4)
also satisfy the two linear readings in (5): in (5.a) we may choose the same six
scripts for each examiner in E or, in (5.b) the same two examiners for each script
in S, obtaining, in both cases, the reading in (4).
1 See [1] for a survey on possible monotonicities featured by GQs.
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(5) a. (∃E:2(examiner))(∀e:E)(∃S:6(script))(∀s:S) marked(e, s)
b. (∃S:6(script))(∀s:S)(∃E:2(examiner))(∀e:E) marked(e, s)

I disagree with this supposition and I believe it is logically, linguistically and em-
pirically non-motivated. Concerning its logical inadequacy, it can be shown (see
[19]) that the implication does not hold when non-M↑ quantifiers are involved.
From a linguistic point of view, I believe that not only IS readings do actually
occur in NL, but they are rather widespread in everyday human life. Consider:

(6) a. Two students of mine have seen three drug-dealers in front of the school.
b. Most men noticed that few children left the room.
c. The director suggested the failure of two students to most of the teachers.

In (6.a), world knowledge seems to render the reading where the two underlined
quantifiers are independent of one another the most salient. Analogously, (6.b)
refers to a set of most men and a set of few children such that each man in
the former notices that each child in the latter left the room. Finally, (6.c) is
saying that the director has two specific students in mind and suggested their
respective failure to each individual in a specific set of most teachers.

The existence of IS readings seems also to be empirically confirmed; the reader
is addressed to [7] and, in particular, to [8] whose results seem hard to recon-
cile with approaches that do not take them into account. In his cross-linguistic
experiment, Gil shows that IS readings are actually the most highly preferred
interpretations by native speakers of Dutch, Hebrew, and Bengali. Furthermore,
he provides evidence in favour of the hypothesis that the speakers were per-
forming a semantic rather than a pragmatic task. Similarly, [22] argues that NP
referentiality strongly depends on the combinatorics of the grammar. He pro-
poses a logical framework for English only, where all NPs but the universally
quantified ones (like Every man, All cats, etc.) yield a Skolem term. Conversely,
in other languages, like Japanese (see [17], [14]), it seems that all NPs, including
the universally quantified ones, are referentially interpreted (Steedman, p.c.).

From all these considerations, then, it seems that the fact that IS readings
may be special cases of other non-IS ones does not appear to be a sufficient
justification for disregarding them. The logic proposed here can be uniformly
used to represent the semantics of all natural languages regardless of their scopal
preferences, in that IS readings are not seen as special cases of the non-IS ones.

3 The Need of Maximality Conditions

Until we referentially interpret indefinites only, the truth values of the formulae
may be easily handled, while it is not so when referentiality is also enabled on
other NPs. In particular, we need to introduce special clauses, termed Maximality
Conditions, when the NPs involves downward monotone (M↓) or non-monotone
(non-M) quantifiers. Consider (7a-c), respectively involving an M↑ (At least two),
an M↓ (At most two), an a non-M quantifier (Exactly two) quantifier
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(7) a. At least two men walk.
b. At most two men walk.
c. Exactly two men walk.

by using Skolem terms, it seems that the meaning of (7.a-c) has to be represented
via the formulae in (8.a-c) respectively.

(8) a. ∃fm0 [ |fm0| ≥ 2 ∧ ∀x[ x ∈ fm0 → (man′(x) ∧ walk′(x))] ]

b. ∃fm0 [ |fm0| ≤ 2 ∧ ∀x[ x ∈ fm0 → (man′(x) ∧ walk′(x))] ]

c. ∃fm0 [ |fm0| = 2 ∧ ∀x[ x ∈ fm0 → (man′(x) ∧ walk′(x))] ]

Nevertheless, only (8.a) correctly yields the truth values of the corresponding
sentence. To see why, consider a model in which three men walk. In such a
model, (7.a) is true, while (7.b) and (7.c) are false. Conversely, all formulae in
(8) evaluate to true, in that all of them allow to choose a Skolem term fm0 whose
denotation is a plural individual referring to a set of two walking men. Therefore,
we cannot allow a free choice of the Skolem terms. Instead, they have to denote
the maximal set of individuals satisfying the predicates, i.e. the maximal set of
walking men, in (8). This is achieved by changing (8.b-c) to (9.a-b) respectively

(9) a. ∃fm0 [ |fm0| ≤ 2 ∧ ∀x[ x ∈ fm0 → (man′(x) ∧ walk′(x))] ∧
¬∃f ′

m0
[ fm0 ⊆ f ′

m0 ∧ ∀y[ y ∈ f ′
m0→(man′(y) ∧ walk′(y))]]]

b. ∃fm0 [ |fm0| = 2 ∧ ∀x[ x ∈ fm0 → (man′(x) ∧ walk′(x))] ∧
¬∃f ′

m0
[ fm0 ⊆ f ′

m0 ∧ ∀y[ y ∈ f ′
m0→(man′(y) ∧ walk′(y))]]]

The clauses in boldface are maximality conditions asserting the nonexistence of
a superset of fm0 whose elements also satisfy man′ and walk′. Therefore, (9.a-b)
are true iff fm0 denotes the set of all walking men, and this contains exactly two
and at most two individuals. In a model with three walking men, (9.a) and (9.b)
correctly turn out to be false2. [21] proposed a framework grounded on maxi-
mality conditions and 1-place GQs, i.e. functions of type 〈〈e, t〉, t〉. Furthermore,
her formulae include FOL predicates whose denotations are relations over the
domain, rather than Skolem terms whose denotations are plural individuals. In
order to represent IS readings, Sher proposed to impose a maximality condition
on the cartesian product of the independent sets. (10) shows an example where
Twoy and Twoz are independent of one another, and they both depend on Twox.

(10) Twox boys have twoy toys and twoz friends who don’t like their toys.

∃PxPyPz [Cx: 2!x(Px(x)) ∧ Cyz: ∀x[Px(x)→2!y(Py(x, y)) ∧ 2!z(Pz(x, z))] ∧
IN : ∀xyz[(Py(x, y) ∧ Pz(x, z))→ (boy′(x) ∧ toy-of ′(y, x)∧

friend-of ′(z, x) ∧ ¬ likes′(z, y))] ∧
Max(〈Px〉, 〈Cyz〉) ∧Max(〈Py , Pz〉, 〈IN〉)]

2 Note that, for the sake of uniformity, the maximality condition in boldface can be
inserted in the first formula as well: it does not affect the truth values.
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The multiple existential quantification has scope on a conjunction of labelled
clauses (labels are ‘Cx:’, ‘Cyz:’ and ‘IN :’) and a maximality condition in the
form Max(S1, S2), where S1 and S2 are a set of existentially quantified predi-
cates and a set of labels respectively3. The labelled clauses require all the indi-
viduals in the extention of a predicate to satisfy a certain subformula, while the
maximality conditions constraint the cartesian product of the predicates in S1

to be a maximal cartesian product satisfying the clauses whose labels are in S2.
For example, for Max(〈Py , Pz〉, 〈IN〉) the following equivalence holds

Max(〈Py , Pz〉, IN) ⇔
∀P ′yP ′z[ ∀xyz[ (Py(x, y) ∧ Pz(x, z))→ (P ′y(x, y) ∧ P ′z(x, z))∧

(P ′y(x, y) ∧ P ′z(x, z))→ (boy′(x) ∧ . . . ∧ ¬ likes′(z, y)) ]→
∀xyz[ (P ′y(x, y) ∧ P ′z(x, z))→ (Py(x, y) ∧ Pz(x, z)) ] ]

A typical situation in which (10) comes out as true is one where the extension
of the ‘IN’ condition includes two maximal substructures of the form ([21], p.38):
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4 Extending Sher’s Theory to All NL Determiners

The main peculiarity of Sher’s proposal is that it allows to devise formulae with
any partial order on any set of quantifiers, regardless of their monotonicities.
Nevertheless, it involves 1-place GQs only; this amount to saying that her logi-
cal framework allows to represent NL numerals only. In fact, 1-place GQs have a
single argument, i.e. they do not distinguish between restriction and body. Con-
versely, the semantics of NL quantifiers is grounded precisely on this distinction.
Therefore, it is necessary to introduce 2-place GQs, i.e. functions of type 〈〈e,
t〉, 〈〈e, t〉, t〉〉. Some examples of formulae involving 2-place GQs are

‖Fewx(P1(x), P2(x))‖M=1 iff |(‖P1(x) ∧ P2(x)‖M )| < ε ∗ |(‖P1(x)‖)|
‖n!x(P1(x), P2(x))‖M=1 iff |(‖P1(x) ∧ P2(x)‖M )| = n

By using 2-place GQs, we can represent the meaning of sentences like (11)

(11) Fewx men inserted ay coin in everyz coffee machine.

∃PxPyPz[ Cx: Fewx(man’(x), Px(x)) ∧ Cy: ∀y(CoffeeMach’(y), Py(y)) ∧
Cz: ∀xy[(Px(x)∧Py(y))→ ∃z(coin’(z), Pz(x, y))] ∧
IN: ∀xyz[Pz(x, y, z)→ inserted’(x, y, z)] ∧
Max(〈Px, Py〉, 〈Cz〉) ∧ Max(〈Pz〉, 〈IN〉) ]

3 It must be stressed that labels are just a notational convenience used to refer to
subformulas in the Max predicate.
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The formula in (11) expresses the preferred reading of the sentence, where there
is a set including few men and a set including all coffee machines and each man
in the former inserted a coin in each machine in the latter (clearly, the coin
is different for each pair 〈Man, Coffee machine〉). The formula in (11) requires
‖Pz‖M to be the maximal set of triples satisfying inserted′ (i.e. it has to coincide
with ‖inserted′‖M ) and ‖Px‖M ×‖Py‖M a maximal cartesian product such that
for each pair 〈m, c〉 in it, ‖λz .Pz(m, c, z)‖M contains at least one coin. Finally, iff
‖Px‖M and ‖Py‖M contain few men and all coffee machines respectively, (11) will
be true. Although the introduction of 2-place GQs allows to represent sentences
like (11), it does not suffice yet to cope with nested quantifications. Consider:

(12) Exactly two [representatives [of exactly three African countries]] arrive.

The semantics of the IS reading of (12), where two representatives of the same
three African countries arrive, is not easy to represent with a Sher-like formula.
In fact, at first glance, it seems that the nested quantification in the sentence
has to be mirrored in the formula via a logical nested quantification. In other
words, it seems that the formula yielding the meaning of (12) has to be4:

(13) ∃PxPy[ Cx: 2!x(Ψx(x), Px(x)) ∧ IN : ∀x[Px(x)→ arrive′(x)] ∧
Max(〈Px〉, 〈IN〉) ],

Ψx =def λx.[ Cy: 3!y(af−c′(y), Py(y)) ∧
Ry: ∀y[Py(y)→ (rep−of ′(x, y))] ∧ Max(〈Py〉, 〈Ry〉) ]

(13) does not properly capture the truth values of the IS reading of (12) since
Ψx is true only for those individuals that represent all and only the individuals
in Py. On the contrary, in an IS reading, a representative may represent other
African countries besides the ones in Py. Consider a model where it holds that:

- r1 represents Egypt, Morocco, Tunisia, and Libya.
- r2 represents Egypt, Morocco, Tunisia, and Algeria.

and suppose that both r1 and r2 arrive. Clearly the IS readings of (13) have to
evaluate to true in this model: the model actually includes a set of exactly three
African countries (Egypt, Morocco, and Tunisia) such that exactly two of their
common representatives arrive. Conversely, (13) evaluates to false. In fact, by
taking ‖Py‖M as the set {Egypt,Morocco, Tunisia}, the subformula

Ry: ∀y[Py(y)→ (rep−of ′(x, y))] ∧ Max(〈Py〉, 〈Ry〉)
is false both when x = r1 and x = r2, because ‖Py‖M is not the maximal set
of individuals represented either by r1 or by r2. Alternatively, we could take
‖Py‖M ≡ {Egypt, Morocco, Tunisia, Libya}; however, in such a case, ‖Ψx‖M
will contain r1 only, and the formula is again false since ‖Ψx‖M has to contain
exactly two arriving representatives. The same considerations hold by taking
‖Py‖M ≡ {Egypt, Morocco, Tunisia, Algeria}: ‖Ψx‖M will contain r2 only.

4 To increase readability, the restriction of 2!x is externally defined as a predicate Ψx.
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In order to capture the correct truth conditions of IS readings, we need to
avoid nested quantifications in the formulae. Further evidence for this claim is
provided by analizing (14) in the logical framework proposed in [22].

(14) a. Exactly two boys visited exactly one museum.
b. ∀x[x ∈ skboy′;λs.‖s‖=2 → visited′(x, skmuseum′ ;λs.‖s‖=1)]

In Steedman’s framework, the formula corresponding to (14.a), shown in (14.b),
contains a Skolem term for each NP; Skolem terms are in the form skp;c where
p is the restriction, e.g. the predicates boy′ and museum′ in (14.a), and c a
cardinality condition. In (14), the two cardinality conditions require the denoted
plural individual to include exactly two and exactly one element respectively. The
maximality conditions are not explicitly asserted; rather, they are a component of
the model theory. In particular, the model theory asserts that a formula ∀x[Φ(x)]
is true iff, for each individual i in the domain, each Skolem term skp;c occurring
in Φ[x\i] denotes a maximal set of individuals satisfying p(skp;c), c(skp;c), and all
atomic predicates in Φ[x\i] where it is involved. Note that (14.a) does not contain
a nested quantification while (14.b) does: the Skolem term skmuseum′;λs.‖s‖=1 is
embedded in the scope of the universal quantifier ranging over the elements
of skboy′;λs.‖s‖≥2. As in the example discussed above in Sher’s framework, the
evaluation of the maximality conditions on this embedding prevents the formula
to predict the right truth conditions. Consider a model where it holds that

- A boy b1 visited the museum m1.
- A boy b2 visited the museums m1 and m2.

In this model, the IS reading of (14.a) is true, while (14.b) is false. In fact,
the only reasonable denotation of skboy′;λs.‖s‖=2 is the set {b1, b2}; however, in
such a case, skmuseum′ ;λs.‖s‖=1 has to refer to a maximal set of museums that
independently renders true each of the two subformulae:

- visited′(b1, skmuseum′;λs.‖s‖=1)
- visited′(b2, skmuseum′;λs.‖s‖=1)

Nevertheless, by taking ‖skmuseum′ ;λs.‖s‖=1‖M ≡ {m1}, the first subformula
evaluates to true, while the second to false: {m1} is the set of all museums vis-
ited by b1, but not by b2. By taking ‖skmuseum′;λs.‖s‖=1‖M ≡ {m1,m2}, the
opposite holds: {m1,m2} is the set of all museums visited by b2, but not by b1.
To solve the problem arising from Nested Quantification, two different solutions
are possible: the first one aims at identifying the set of all possibile readings
that an NL sentence can receive, and at adding further suitable constraints to
the logic so that it will guarantee to assign the correct truth conditions to those
readings only. For instance, it can be argued that (13) and (14) never receive a
reading where two persons represent the same three African countries and where
two boys visited the same single museum. The second solution, which will be
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proposed here, aims at defining a logic that works for any set of quantifiers and
any partial order on them, regardless of their actual existence in NL.

5 A Uniform Logical Framework for Referential NPs

In this section, I propose an extention of [21] where formulae do not contain
embedded subformulae. The key idea is to avoid nestings in the formulae by
introducing two relational variables PRx and PBx for each quantifier Qx. The first
one will identify the set of entities in Qx’s restriction, while the second one the
set of entities satisfying Qx’s body. The formulae will assert maximality condi-
tions on both PRx and PBx . Contrary to Sher’s approach, where all predicates
are inserted in a single inclusion condition, in the proposal made here several
inclusion conditions need to be distinguished. One of them is the main inclusion
condition (I will continue to label it by IN); this will maximize the body of one
or more quantifiers with respect to the predicates constituting the main asser-
tion. Then, the formulae include another inclusion condition, with label Rx, for
each quantifier Qx; this will be asserted on the predicates in Qx’s restriction.
For instance (15) shows the formula corresponding to the IS reading of (12).

(15) ∃PRx PBx PRy PBy [ 2!x(PRx (x), PBx (x)) ∧ 3!y(PRy (y), PBy (y)) ∧
IN : ∀x[PBx (x)→ (arrive′(x))] ∧ Max(〈PBx 〉, 〈IN〉) ∧
Ry: ∀y[PRy (y)→ (af−c′(y))] ∧ Max(〈PRy 〉, 〈Ry〉) ∧
Rx: ∀xy[(PRx (x) ∧ PBy (y))→ (rep−of ′(x, y))] ∧ Max(〈PRx , PBy 〉, 〈Rx〉)]

The formula in (15) identifies four sets of entities. PRy is the restriction of Exactly
three and it is required to be the set of all African countries. Analogously, PBx ,
the body of Exactly two, is required to be the set of all arrivers. PRx , and PBy ,
the restriction of Exactly two and the body of Exactly three respectively, need
to be maximized together, in that the two quantifiers are independent to each
other. Therefore, ‖PRx ‖M × ‖PBy ‖M is a maximal cartesian product included in
the extension of rep−of ′ such that each individual in ‖PRx ‖M represents each in-
dividual in ‖PRx ‖M . Finally, iff ‖PRx ‖M contains exactly two elements of ‖PBx ‖M
and ‖PBx ‖M contains exactly three elements of ‖PRy ‖M the formula will be true.
In the model above, (15) predicts the right truth values: ‖PRx ‖M can be taken
as the set made up by r1 and r2 and ‖PBy ‖M as the set of all their commonly
represented African countries, i.e. {Egypt,Morocco, Tunisia}.

The two standard linear readings of the sentence are allowed in a uniform way;
for instance, (16) shows the reading where Exactly two outscopes Exactly three.

(16) ∃PRx PBx PRy PBy [ Cx: 2!x(PRx (x), PBx (x)) ∧
Cy: ∀x[PRx (x)→ 3!y(PRy (x, y), PBy (x, y))] ∧
Rx: ∀xy[PBy (x, y)→ rep−of ′(x, y)] ∧ Ry: ∀xy[PRy (x, y)→ af−c′(y)] ∧
IN : ∀x[PBx (x)→ arrive′(x)] ∧ Max(〈PRy 〉, 〈Ry〉) ∧
Max(〈PBy 〉, 〈Rx〉) ∧ Max(〈PRx 〉, 〈Cy〉) ∧ Max(〈PBx 〉, 〈IN〉) ]
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In this formula, ‖PRy ‖M is required to be a binary relation such that, for each
individual i, ‖λy.PRy (i, y)‖M is the set of all African countries5. Analogously,
‖PBy ‖M is required to be a binary relation such that, for each individual i,
‖λy.PRy (i, y)‖M is the set of all individuals represented by i. Then, the car-
dinality condition with label Cy constraints ‖PRx ‖M to be the set of each in-
dividual such that all it represents includes exactly three African countries
(potentially different from individual to individual). Finally, iff exactly two
elements in ‖PRx ‖M arrive, the formula evaluates to true. Another example is
shown in (17)

(17) Fewx boys ate [ay portion of [everyz course]]

∃PRx PBx PRy PBy PRz PBz [Cx: Few!x(PRx (x), PBx (x)) ∧ Cz : ∀z(PRz (z), PBz (z)) ∧
Rx: ∀x[PRx (x)→ boy′(x)] ∧ Rz: ∀z[PRz (z)→ course′(z)] ∧
Cy: ∀xz[(PBx (x) ∧ PBz (z))→ ∃y(PRy (x, z, y), PBy (x, z, y))] ∧
Ry: ∀xzy[PRy (x, z, y)→ portion−of ′(y, z)] ∧ Max(〈PRy 〉, 〈Ry〉) ∧
IN : ∀xzy[PBy (x, z, y)→ ate′(x, y)] ∧ Max(〈PBy 〉, 〈IN〉) ∧
Max(〈PRz 〉, 〈Rz〉) ∧ Max(〈PRx 〉, 〈Rx〉) ∧ Max(〈PBx , PBz 〉, 〈Cy〉)]

The meaning of (17) is that there is a set of few boys and a set of every course
such that each boy in the former ate a portion of each course in the latter.
Therefore, in this reading, Fewx and Everyz are independent of one another and
they both outscope Ay, because the portion varies for each pair 〈boy, course〉.
In the formula, ‖PBy ‖M is a ternary relation such that for each individual i,
‖λxy.PBy (x, i, y)‖M coincides with the extension of ate′, while ‖PRy ‖M is a unary
relation such that for each individual i, ‖λzy.PBy (i, z, y)‖M coincides with the
extension of portion−of ′. Then, the cardinality condition with label Cy con-
straints ‖PBx ‖M × ‖PBz ‖M to be a maximal cartesian product such that each
individual in ‖PBx ‖M ate at least one portion of each individual in ‖PBz ‖M .
Finally, iff ‖PBx ‖M contains few boys and ‖PBz ‖M every course, the formula
will be true. As final complex example, (18) shows a formula involving four
quantifiers.

(18) describes a situation where there is a different pair of students and a
different program for each teacher, while the topics vary for each pair 〈student,
program〉. The condition with label Cz constraints ‖PRy ‖M × ‖PBw ‖M to be a
maximal cartesian product including pairs of pairs such that for each individual i,
‖λy.PRy (i, y)‖M is the set of all students who studied less than half of the topics
of all programs in ‖λw.PBw (i, w)‖M . Then, the conditions with label Cw and Cy
constraints ‖PBx ‖M to be a maximal set of individuals i such that ‖λy.PRy (i, y)‖M

5 The truth values do not change if ‖P R
y ‖M would be a unary relation made up the set

of all African countries, as in (15); however, for the sake of uniformity, two relational
variables P R

x and P B
x will always have the same arity.
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contains at least two students failed by i and ‖λw.PBw (i, w)‖M the single program
of i. Finally, iff ‖PBx ‖M contains all teachers, the formula will be true.

(18) Everyx teacher failed at least twoy students who studied less than halfz of
the topics in hisw program.

∃PRx PBx PRy PBy PRz PBz PRw PBw [ Cx: ∀x(PRx (x), PBx (x)) ∧
Rx: ∀x[PRx (x)→ teacher′(x)] ∧ Max(〈PRx 〉, 〈Rx〉) ∧
Cw: ∀x[PBx (x)→ 1!w(PRw (x,w), PBw (x,w))] ∧
Cy: ∀x[PBx (x)→ Twoy(PRy (x, y), PBy (x, y))] ∧
Rw: ∀xw[PRw (x,w)→ program−of ′(w, x)] ∧ Max(〈PRw 〉, 〈Rw〉) ∧
IN : ∀xy[PBy (x, y)→ failed′(x, y)] & Max(〈PBy 〉, 〈IN〉) ∧
Cz : ∀xyw[(PRy (x, y)∧PBw (x,w))→< 1

2 z(P
R
z (x,w, y, z),PBz (x,w, y, z))) ∧

Rz: ∀xwyz[PRz (x,w, y, z)→ topic′−of ′(z, w)] & Max(〈PRz 〉, 〈Rz〉) ∧
Ry: ∀xwyz[PBz (x,w, y, z)→ (stud′(y) ∧ study′(y, z))] & Max(〈PBz 〉, 〈Ry〉) ∧
Max(〈PBx 〉, 〈Cw , Cy〉) ∧ Max(〈PRy , PBw 〉, 〈Cz〉) ]

6 Conclusions

In this article, the work proposed in [21] was extended to 2-place GQs. The
result is a new logical framework able to represent NL sentences where all NPs
are assumed to be referential in nature. The main problem that was solved in
order to achieve this result was the occurrence of logical quantifier embeddings,
which, if evaluated with respect to a maximality condition and an IS reading, lead
to wrong truth conditions. Nested quantifications were forbidden by introducing
two referential variables for each quantifier Q, one referring to the set of entities
in Q’s restriction and one to the set of entities in Q’s body.

In this framework, IS readings are considered as natural as the standard linear
ones, in that it is possible to set up formulae with any set of quantifiers and any
partial order on them, regardless of their actual existence in NL. Whenever the
framework is incorporated in an NL theory where some\all NPs receive a refer-
ential meaning, the task of determining which partial orders are really available
in NL, i.e. which formulae have to be built, is left to the syntax-semantic inter-
face and the disambiguation process. A syntax-semantic interface with respect
to a Dependency Syntactic Structure (see [15], [12]) is proposed in [19].

I believe this approach to be more uniform, modular and less risky than
proposals aiming at defining logics whose expressivity is restricted to NL Se-
mantics. In fact, it is rather difficult to identify the set of all possible readings
that an NL sentence can receive, and there is not a clear agreement yet in the
linguistic community about them. These proposals would require to add new
constructs\constraints in the logic, in order to extend\restrict its expressivity,
once a new non-covered reading is found and considered acceptable or once a
covered reading is rejected.
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Abstract. We present a sound and complete logical system for deriv-
ing inclusions between graphs from inclusions between graphs, taken as
hypotheses. Graphs provide a natural tool for expressing relations and
reasoning about them. Here we extend this system to a sound and com-
plete one to cope with proofs from hypotheses. This leads to a system
dealing with complementation. Other approaches using pictures for re-
lations use as bases the theory of allegories or rewriting systems. Our
formalism is more widely applicable and provides a common denomina-
tor of these approaches.

Keywords: Relational language, reasoning from hypotheses, graph cal-
culus, completeness, complementation.

1 Introduction

This paper presents a sound and complete logical system for deriving inclusions
between graphs from a set of inclusions between graphs, taken as hypotheses.
Traditionally, formulas are written on a single line. S. Curtis and G. Lowe [4]
suggest a more visually appealing alternative: using graphs for expressing rela-
tions and reasoning about them in a natural way. Although Curtis and Lowe
give motivation, present the ideas of using graphs to prove inclusions between
relations and illustrate how to apply such a calculus to justify the inference of an
inclusion from a set of hypotheses, no proper treatment of these ideas as a logical
system seems to have been presented. A proper formulation of the logical system
+RG was presented [6]: a playful logical calculus to derive graphs from graphs,
shown to be sound, complete and decidable, for the valid inclusions without the
empty relation and complementation.

The main motivation of the present work is to obtain a graph calculus that can
be applied to algebras of relations. As complementation can be defined in terms
of intersection, union, the universal and the empty relations, here we extend the
system +RG to cope with the empty relation and derivations from hypotheses.
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This is more than a simple and natural extension. The proof of completeness for
this non-decidable system involves much more elaborated work.

Pictures have been proposed by some authors as a tool to help investigating
and applying relational formalisms. Here, we mention two main lines.

The approach based on the theory of allegories [1,2,3,4,11] views pictures as
arrows in a (unitary pretabular) allegory [8] and uses laws directly associated to
the valid allegorical identities for transforming pictures. Results of the theory of
allegories are used to show that two pictures can be proved equal by using the
laws on pictures iff they represent the same relation.

The approach based on the rewriting systems [12,13,14] endows pictures with a
relational semantics, which allows them to be interpreted as terms of an algebraic
language. A rewriting mechanism for pictures is built as a variant of the algebraic
approach to graph rewriting. The way one can use rewriting sequences as proofs
leads to a general and flexible tool for the proof of relational algebraic identities.

Our approach [3,6,7] may be called the logic systematic approach: pictures
are considered as ordinary formulas of a (non-orthodox) logical system and a set
of inference rules is provided for deriving pictures from pictures. This approach
emphasizes notions of normal form and homomorphism for pictures, which are
used to prove the inclusions and equalities.

Each one of these approaches has its own flavor, techniques of investigations
and line of results. Nevertheless, they are not completely disjoint, sharing char-
acteristics whose interactions deserve further investigation. The work reported
here may also be viewed as a contribution in this direction. We thus provide a
new formalism, which is more widely applicable and provides a common denom-
inator of the above three lines of investigation.

The structure of this paper is as follows. In Section 2, we briefly review the
relational framework. In Section 3, we introduce our non-negative graph rela-
tional framework. In Section 4, we present a derivation system for our graph
relational framework and examine some of its aspects: strategy for derivations,
soundness and completeness. In Section 5, we indicate how to extend it to handle
complementation. In Section 6, we show an application of the graph calculus:
proving the main result in [9] as a corollary of our completeness result. In the
concluding section, we comment on some on-going work and perspectives. The
Appendix complements the main text with figures and proofs of the results.

2 Relational Framework

We now briefly review the relational framework.
Abstractly, relation algebras can be defined by a set of identities specifying

the behavior of the Boolean and Peircean operators as follows. The former oper-
ators behave as in Boolean algebras. The latter operators behave as in involuted
monoid theory. One also adds an identity expressing a geometric aspect of the
interaction of Boolean and Peircean operators [10,16].

The non-negative relational language RL− is the fragment of the relational
algebra language with no occurrences of complementation. The RL− terms or
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simply terms, typically denoted by R,S, T , are generated from the set of rela-
tional variables Rvar = {ri : i ∈ ω} by applying the relational operators E,
O, I, T, �, �, and ◦, as usual. We use T for the set of all (RL−) terms. The
non-negative relational inclusions and equalities are the expressions of the forms
R � S and R ≡ S, respectively.

A model is a pair M = (M, rMi )i∈ω, where M is a nonempty universe and
rMi ⊆M ×M for every i ∈ ω. The meaning [[R]]M of a term R in a modelM is
defined as in the relational case (excluding all references to complementation).
Formally, given a modelM with universeM , we interpret the symbols as follows:
symbols E, O and I as the relations M2 := M × M , the empty relation and
{(a, a) : a ∈M}, respectively, and symbols �, �, T and ◦ as intersection, union,
conversion and composition of relations, respectively. Satisfaction, consequence
and validity are defined as usual:M |= R � S iff [[R]]M ⊆ [[S]]M andM |= R ≡ S
iff [[R]]M = [[S]]M. Given a set of inclusions Δ, we use ModΔ for the class of
models satisfying every inclusion in Δ and we define consequence by Δ |= R � S
iff ModΔ ⊆ Mod {R � S}. The validities are the consequences of the empty set.

3 Non-negative Graph Relational Framework

We now introduce syntax and semantics of our graph relational framework.
In the non-negative graph relational framework RG− relations are repre-

sented by (directed pseudo multi) graphs having two distinguished nodes and
arcs labeled by non-negative relational terms. We consider a fixed set of nodes
Inod = {xn : n ∈ ω}, typically denoted by x, y, z, u, v, w.

A slice is a structure S = (N,A, x, y), where N is a finite nonempty set of
nodes; A ⊆ N × T ×N is a set of labeled arcs (T is the set of all terms), with
x, y being, not necessarily distinct, distinguished nodes in N . A non-negative
relational graph, or simply a graph, is a finite set of slices. We often identify a
single-slice graph with its slice.

We call a slice basic iff the labels of its arcs are relational variables or I and a
basic graph is one whose slices are basic. The RG− inclusions and equalities are
expressions of the forms G � H and G ≡ H , respectively.

We now present semantics: slices and graphs denote binary relations.
Given a slice S = (N,A, x, y) and a model M with universe M , an M-

assignment for S, denoted by g : S → M, is a function g : N → M such that
(gu, gv) ∈ [[R]]M for every arc uRv in A. Now, the meaning of a slice S in a
model M is the binary relation [[S]]M on M defined by (a, b) ∈ [[S]]M iff gx = a
and gy = b, for some assignment g : S → M. The meaning of a graph G in a
model M, [[G]]M, is the union of the meanings of its slices.

We now extend some notions for terms to graphs. Satisfaction is as expected:
M |= G � H iff [[G]]M ⊆ [[H ]]M andM |= G ≡ H iff [[G]]M = [[H ]]M. Given a set
of inclusions Γ , we use ModΓ for the class of models satisfying every inclusion
in Γ , and we define consequence by Γ |= G � H iff ModΓ ⊆ Mod {G � H}.
The validities are the consequences of the empty set. Also, graphs G and H are
equivalent iff G ≡ H is valid.
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We connect the relational and graphical frameworks by associating single-slice
graphs to terms. Given a term R, its graph is GR := {({x, y}, {xRy}, x, y)}. Note
that R and GR have the same meaning in every model.

4 Non-negative Graph Relational Calculus

We now introduce a derivation system for our graph relational framework.
The deductive apparatus of RG− is given by a set of graph transforming rules:

some rules transform a graph into an equivalent one, and a rule to compare
graphs. To state the transformation rules, we use the node substitution notation
u
v for replacing u by v, which we extend naturally to pairs and triples as well as
sets, e.g., for a set A of arcs, we put Au

v := {wu
vRz

u
v : wRz ∈ A}.

The transformation rules are given in Tables 1, 2 and 3. Table 1 covers the la-
bels of the graphs. Table 2 gives the crucial rule for comparing graphs. Table 3
introduces the new rule for hypotheses. The rules in Tables 1 and 3 can be applied
in both directions; each one of these rules is an abbreviation for two rules: down-
ward and upward. The rules in Table 1 allow the elimination (downwards) and
the introduction (upwards) of the operators.

We will explain each two-way rule in the downward direction. Each rule in
Table 1 involves the application of the local transformation specified in the rule,
leaving the rest of the graph untouched. The meaning of the graph is to remain
unchanged. Soundness of the rules follows from these explanations.

Table 1. Elimination/Introduction rules for transforming graphs

Unv
G ∪ {(N, A ∪ {uEv}, x, y)}

G ∪ {(N, A, x, y)}

Idn
G ∪ {(N, A ∪ {uIv}, x, y)}
G ∪ {(N u

v
, A u

v
, x u

v
, y u

v
)}

Cnv
G ∪ {(N, A ∪ {uRTv}, x, y)}
G ∪ {(N, A ∪ {vRu}, x, y)}

Int
G ∪ {(N, A ∪ {uR � Sv}, x, y)}
G ∪ {(N, A ∪ {uRv, uSv}, x, y)}

Cmp
G ∪ {(N, A ∪ {uR ◦ Sv}, x, y)}

G ∪ {(N ∪ {w}, A ∪ {uRw, wSv}, x, y)} if w �∈ N

Uni
G ∪ {(N, A ∪ {uR � Sv}, x, y)}

G ∪ {(N, A ∪ {uRv}, x, y), (N, A ∪ {uSv}, x, y)}

Vd
G ∪ {(N, A ∪ {uOv}, x, y)}

G



302 R. de Freitas et al.

βGR

xR yRw�r �s
�
t

βGS

xS yS

u

v

���r

���r

���
s

���
t

Fig. 1.

Rules in Table 1 are similar to those of +RG [7], with one new rule to deal
with the O operator.

Rule Unv allows erasing an arc labeled by E from a slice. Rule Idn allows erasing
an arc uIv and a node u, renaming nodes and redirecting arcs accordingly. Rule
Cnv allows replacing arcs: uRTv by vRu. Rule Int allows replacing an arc uR�Sv
by arcs uRv and uSv. Rule Cmp allows replacing an arc uR ◦ Sv by arcs uRw
and wSv, with a new node w. Rule Uni allows replacing a slice T having an arc
uR � Sv by two other slices TR and TS , obtained from T by replacing the arc
uR�Sv by new arcs uRv and uSv, respectively. The new rule Vd allows erasing
a slice having an arc uOv.

We can reduce each graph G to a basic graph βG equivalent to G by applying
the elimination rules in Table 1 (except Idn).

The next example will illustrate the idea of arc preservation and motivate the
Graph Cover rule (GrCvr, in Table 2).

Example 1. Consider the terms R := r ◦ (s � t) and S := (r ◦ s) � (r ◦ t). To
establish the term inclusion R � S, we form the corresponding term graphs GR
and GS and reduce them to basic forms βGR and βGS , shown in Figure 1. Now,
consider the node mapping θ : xS 
→ xR, yS 
→ yR, u 
→ w, v 
→ w. We see that
it preserves arcs, mapping arcs in βGS to arcs in βGR. So, we will be able to
finish the derivation by applying the Graph Cover rule.

Given slices S = (N,A, x, y) and S′ = (N ′, A′, x′, y′), a draft homomorphism
θ : S′ d→ S is a function θ : N ′ → N such that if u′Rv′ ∈ A′, then θu′Rθv′ ∈ A.
A homomorphism θ : S′ → S is a draft homomorphism θ : S′ d→ S such that
θx′ = x and θy′ = y. Given graphs G and H , we say that H covers G, denoted by
G← H , iff for each slice S ∈ G there exist a slice T ∈ H and a homomorphism
θ : T → S. The downward rule GrCvr (Table 2), allows one to replace a graph
by another one covering it.

Table 2. Graph Cover rule

GrCvr
G

H
if G ← H
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Table 3. Hypothesis rule

HypΓ

G ∪ {S}
G ∪ glue θ(H,S)

if G′ ∪ {S′} 	 H ∈ Γ and θ : S′ d→ S

Soundness of GrCvr follows since draft homomorphisms transfer assignments
by composition: if θ : T d→ S and g : S →M, then g.θ : T →M.

The next example will illustrate the idea of “gluing” slices and motivate the
hypothesis rule HypΓ (Table 3).

Example 2. Consider the inclusion (r ◦ s) � (r ◦ t) � r ◦ (s � t). It is well-known
that this inclusion is not valid, but it does hold if r is functional, which can be
expressed by the inclusion rT ◦ r � I. With the notation of Example 1, we wish
to derive the inclusion S � R from the hypothesis T1 � T2, where T1 := rT ◦ r
and T2 := I. As before, we reduce the question to graph inclusions: deriving
GS � GR from GT1 � GT2 . The corresponding basic forms appear in Figures 1
and 2. Now, there is no homomorphism from βGR to βGS : there is no node in
βGS to map w to. But, the lefthand side βGT1 of the hypothesis occurs in βGS .
If we add to this occurrence the righthand side βGT2 , we can then reduce the
result to a slice into which we can find a homomorphism from βGR. Indeed, we
have a draft homomorphism θ : βGT1

d→ βGS given by θxT1 := u, θyT1 := v and
θz := yS . We now “glue” slice βGT2 onto βGS using the nodes θxT1 = u and
θyT1 = v, obtaining slice T in Figure 2. Now, an application of the downward
Idn rule to T yields a slice isomorphic to βGR.

The rule for hypotheses uses a few concepts which we now introduce. Con-
sider slices S = (NS , AS , x, y) and T = (NT , AT , w, z), as well as designated
nodes u, v ∈ NS. The result of gluing T onto S via (u, v) is the slice defined
by glue (u,v)(T, S) := (NS � NT w

u
z
v , AS � AT w

u
z
v , x, y). One glues a graph H

by gluing its slices: glue (u,v)(H,S) := {glue (u,v)(T, S) : T ∈ H}. Now, given

a slice S′ = (N ′, A′, x′, y′) and a draft homomorphism θ : S′ d→ S, we set
glue θ(H,S) := glue (θx′,θy′)(H,S).

Rule HypΓ allows one to glue a graph in a slice of a graph.

βGT1

z

xT1

yT1

���
r

���r

βGT2

xT2

yT2

�
I

T

xS yS

u

v

���r

���r

���
s

���
t�

I

Fig. 2. “Glued” slice: βGT2 into βGS
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The notion of derivation is standard. By a Γ -derivation we mean a sequence
G0, . . . , Gn of graphs such that for each i ∈ {1, . . . , n}, graph Gi is obtained from
graph Gi−1 by application of one of the rules in Tables 1, 2 and 3. We say that
a graph inclusion G � H is derivable from a set Γ of graph inclusions, denoted
by Γ  G � H , iff there is a Γ -derivation G0, . . . , Gn such that G0 = G and
Gn = H . Examples of derivations (without hypotheses) appear in [6] and [7].

Soundness of the rules in Tables 1 and 2 is clear from the explanations given
above. Soundness of rule HypΓ in Table 3 follows from Lemma 1, whose proof is
given in the Appendix.

Lemma 1. IfM |= G′ ∪{S′} � H, then [[S]]M ⊆ [[glue θ(H,S)]]M, for any slice
S and draft homomorphism θ : S′ d→ S.

Now, to establish a graph inclusion G � H from a set Γ of graph inclusions,
all in basic form, we can use the strategy of iterating both removal from G of
every slice covered by H and application of HypΓ to a slice in G. If and when
graph G has no more slices, we can conclude that Γ |= G � H . The reason is
as follows. Starting with the graphs G−0 := G and G+

0 := ∅, we have graphs
such that Γ  G � G−n ∪G+

n with G+
n covered by H . Thus, if G−n = ∅, we have

Γ  G � G+
n , and, by the graph cover rule GrCvr, Γ  G+

n � H . Hence, when
this construction does terminate, we have Γ  G � H . Figure 3 in the Appendix
gives a gist of this construction.

The above construction may fail to terminate. A simple example, based on
the density-like term inclusion r � r ◦ r, will illustrate why. Imagine that the
graph inclusion Gr � Gr◦r is in Γ . The application of Gr � βGr◦r to a slice will
produce a larger slice still having Gr within it, so this may lead to an infinite
sequence of increasing slices. See also Figure 4 in the Appendix.

We show (in the Appendix) that, whenever the above construction fails to
terminate, we have such an infinite sequence of increasing basic slices, from
which we can obtain a canonical counter-model.

To define a canonical model, we need an auxiliary concept. Given a slice
S = (N,A, x, y), we define the relation ∼S on N by u∼Sv iff there is an arc
uIv ∈ A. We use ∼∗S for the equivalence closure of ∼S . The canonical model S
based on a sequence (Sn)n∈ω of increasing basic slices is defined as follows. Form
the set N of all nodes occurring in the sequence and define the (equivalence)
relation on N by u ∼ v iff u∼∗Sn

v, for some n. The universe is the quotient Ñ of
N by ∼, with natural map q : N → Ñ . Now define the relations by (ũ, ṽ) ∈ rS
iff there exist n such that the arc u′rv′ is in Sn, with u′ ∼ u and v′ ∼ v.

The canonical model has the factorization property: given a basic slice T ,
a function g : NT → Ñ is an assignment g : T → S iff there exists a draft
homomorphism θ : T d→ Sn, such that g = q.θ. This leads to the crucial property
of the canonical model: S |= Γ and (x̃S0 , ỹS0) ∈ [[H ]]S iff H covers some Sn, for
any basic graph H . We then have completeness of our graph calculus.
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Theorem 1. If Γ |= G � H, then Γ  G � H.

The following corollary shows that the graph calculus achieves the aim it was
originally designed for.

Corollary 1. Let {Ri � Si : i ∈ I} ∪ {R � S} be a set of relational inclusions.
Then {Ri � Si : i ∈ I} |= R � S iff {GRi � GSi : i ∈ I}  GR � GS.

5 Full-Relational Graph Calculus

We now indicate how to handle complementation, so as to obtain a full-relational
graph calculus. We know that the complement of a relation X ⊆ M ×M can
be characterized as the unique relation Y ⊆ M ×M such that X ∩ Y ⊆ ∅ and
M ×M ⊆ X ∪ Y . So, whenever we have a complemented term R within the
label of an arc, we select a new relational variable rR, replace R by rR and add
the two hypotheses R � rR � O and E � R � rR.

Example 3. Consider the inclusion (rT ◦ r ◦ s) � s � O. We will indicate how
one can establish it, using (r ◦ s) � r ◦ s � O and E � (r ◦ s) � r ◦ s as hy-
potheses. The term graphs Gr◦s and G(rT◦r◦s)�s are respectively equivalent (by
Table 1) to {T }, with T := ({w, v, z}, {wrv, vsz}, w, z), and {S}, with S :=
({x, u, y}, {urx, xsy, ur ◦ sy}, x, y). We have a draft homomorphism θ : T d→ S,
yielding glue θ({T }, {S}) = {T ′}, where

T ′ := (NS ∪NT , {urx, xsy, ur ◦ sy, wrv, vsz, wIu, zIy}, x, y).

Now, by Table 1, graph {T ′} is equivalent to

H := {(NS ∪NT , {urx, xsy, ur ◦ sy, ur ◦ sy}, x, y)},
which is equivalent (by (r ◦ s) � r ◦ s � O) to the empty graph βGO.

The preceding example shows a rather simple case of how one can handle com-
plementation. More generally, we can use an overall strategy of employing the
hypotheses as follows: use E � R�R to expand a slice into two, and use R�R � O
to erase a slice with parallel arcs R and R.

Example 4. We indicate how to show that complementation inverts inclusion:
r � s yields s � r. We start with the single-slice term graph Gs. We expand it
(by E � r � r) to a two-slice graph G1, which is equivalent (by s � s � O) to
a single-slice graph G2. Now, we have a draft homomorphism θ : Gr

d→ G2, so,
the downward graph cover rule GrCvr (in Table 2) yields the desired graph Gr.

Example 5. As part of De Morgan’s Theorem K [19] one has the implication if
r ◦ s � t, then rT ◦ t � s. To establish this, it is enough to show

{r ◦ s � t, s � s � O,E � s � s, t � t � O,E � t � t} |= rT ◦ t � s, (1)

where s and t are taken themselves as the new relational variables rs and rt.
Figure 5, in the Appendix, presents a graph-calculus derivation establishing (1).
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6 Proof Theory for Linear Lattices

M. Haiman [9] presented a set of rules based on graphs to prove the (infinitary)
Horn sentences of the form

&i∈I(Pi ≤ Qi)⇒ P ≤ Q, (2)

where Pi, Qi, i ∈ I, and P,Q, are lattices terms, which are valid in all linear
lattices. We show how to translate (2) in the relational language and prove that
the main result of [9] follows from the strong soundness and completeness of the
graph calculus.

Let Lvar = {pi : i ∈ I} be a set of lattices variables. The lattice terms,
typically denoted by P,Q, are generated from the pis by applications of the
lattice constructing terms operators ∧ and ∨. A lattice inclusion is an expression
of the form P ≤ Q, where P and Q are lattice terms.

A lattice is a structure L = (L,∧L,∨L,≤L), where (L,≤L) is a partially
ordered set and for every a, b ∈ L, the elements a∧Lb and a∨Lb are, respectively,
the inf and sup of a and b according to ≤L. An assignment of the lattice variables
in a lattice L is a mapping v : Lvar → L. The value of a term under an
assignment is the element [[P ]]vL of L defined by the following rules: [[pi]]vL := vpi,
[[P ∧ Q]]vL := [[P ]]vL ∧L [[Q]]vL and [[P ∨ Q]]vL := [[RP ]]vL ∨L [[RQ]]vL. Let {Pj ≤ Qj :
j ∈ J} ∪ {P ≤ Q} be a set of lattice inclusions and K be a class of lattices. We
say that P ≤ Q is a consequence of {Pj ≤ Qj : j ∈ J} in K when for every
lattice L ∈ K and assignment v of the lattice variables in L, the assumption that
[[Pj ]]vL ≤L [[Qj ]]vL, for every j ∈ J , implies [[P ]]vL ≤L [[Q]]vL.

It is well known that given the set M , the structure E = (EqM,∧E ,∨E ,≤E) is
a lattice when EqM is the set of all equivalence relations on M , ≤E and ∧E are,
respectively, the set inclusion and set intersection, and X ∨E Y is defined as

X ∨E Y := (X | Y ) ∪ (X | Y | X) ∪ (X | Y | X | Y ) ∪ . . .

An important class of lattices of equivalence relations is defined by requiring
that X ∨E Y := X | Y . Since this condition is equivalent to requiring commuta-
tivity of the composition |, we say that L is a lattice of commuting equivalence
relations. Also, call a lattice linear when it is isomorphic to a lattice of commut-
ing equivalence relations.

In [9] M. Haiman presented a set of rules based on graphs to prove the (infini-
tary) Horn sentences of the form &j∈J(Pj ≤ Qj)⇒ P ≤ Q, where Pj , Qj, j ∈ J ,
and P,Q, are lattices terms, which are valid in all linear lattices. In the ter-
minology above this means that the system proposed in [9] proves the sentence
&j∈J(Pj ≤ Qj)⇒ P ≤ Q iff P ≤ Q is a consequence of the set {Pj ≤ Qj : j ∈ J}
in the class of all linear lattices. Now, we prove that the main result of [9] follows
from the strong completeness of the graph calculus.

We assume that the set of lattice variables Lvar := {pi : i ∈ I} is in one-to-
one correspondence with the set of relation symbols Rsym := {ri : i ∈ I} and
that these sets are disjoint and fixed throughout.
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First, we define the translation mapping from lattice terms P to relational
terms RP , by Rpi := ri (i ∈ I), RP∧Q := RP �RQ, RP∨Q := RP ◦RQ. According
to the above, we say that a +RG inclusion R � S is linear lattice like iff the only
operators occurring in R � S are � and ◦ . Second, we denote by LLat the set
of linear lattices like inclusions containing as elements all the inclusions of the
form I � r, rT � r, r ◦ r � r, and r ◦ s � s ◦ r, where r, s are relation symbols.

Theorem 2. Let {Pj ≤ Qj : j ∈ J} ∪ {P ≤ Q} be a set of lattice inclusions.
Then the following are equivalent:
(a) &j∈J Pj ≤ Qj ⇒ P ≤ Q is valid in the class of all linear lattices;
(b) {RPj � RQj : j ∈ J} ∪ LLat  RP � RQ in +RG.

7 Conclusion

We have presented a sound and complete logical system for deriving inclusions
between graphs from inclusions between graphs. We can extend our system
to a full-relational graph calculus with complementation, as indicated in Sec-
tion 4. Our system uses linear derivations, in contrast with other systems for
relations [15].

The monotonicity rule was suggested to handle simple hypotheses [4]. Our
Rule HypΓ was inspired by it, but it involves more elaborated formulation. The
proof of our main result, the completeness theorem, gives a strategy for deriving
a graph inclusion from a set of graph inclusions.

The importance of the the main result of [9] and, consequently, of our The-
orem 2, is discussed in [5,17,20,18], where the proof theory for linear lattices is
extended and applied in the study of expressions involving joins and meets of sub-
spaces of vectors spaces. The main differences between the graph calculi presented
in these works and ours is that they do not use neither the notion of normal form
for graphs nor that of homomorphism between graphs. As future work we intend
to investigate the exact relationship between their calculi and ours.
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Appendix

Proof of Lemma 1. Given (a, b) ∈ [[S]]M, there is an assignment g : S →M
such that gx = a and gy = b. This induces the assignment g.θ : S′ → M. So,
with c := g.θxS′ and d := g.θyS′ , we have (c, d) ∈ [[S′]]M ⊆ [[G′ ∪ S′]]M, whence
(c, d) ∈ [[H ]]M (as M |= G′ ∪ {S′} � H). Thus, (c, d) ∈ [[T ]]M, for some slice
T of H , so, there is an assignment g′ : T →M such that (c, d) = (g′xT , g′yS′).
Now, define g′′ : NS �NT →M naturally to agree with g on NS and with g′ on
NT . This gives an assignment g′′ : glue θ(T, S)→M, with (g′′xS , g′′yS) = (a, b).
Therefore, (a, b) ∈ [[glue θ(T, S)]]M ⊆ [[glue θ(H,S)]]M. ��

Proof of Theorem 1. The proof is based on the construction of a tree with
nodes labeled by basic graphs, based on applications of derived rules iHypΓ and
GrRCvr (Tables 4 and 5). These derived rules uses a few concepts which we now
introduce.

Given a slice S′ = (N ′, A′, x′, y′), an i-draft homomorphism θ : S′ i→ S is
a function θ : N ′ → N such that (1) if u′Iv′ ∈ A′, then θu′∼∗Sθv′, and (2) if
u′Rv′ ∈ A′, then there exist an arc uRv ∈ A such that θu′∼∗Su and θv′∼∗Sv. A
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Table 4. Graph Relaxed Cover rule

GrRCvr
G

H
if G

r← H

Table 5. i-Hypothesis rule

iHypΓ

G ∪ {S}
G ∪ iglue θ(H,S)

if G′ ∪ {S′} 	 H ∈ Γ and θ : S′ d→ S

relaxed homomorphism θ : S′ r→ S is an i-draft homomorphism θ : S′ i→ S such
that θx′∼∗Sx and θy′∼∗Sy.

Given graphs G and H , we say that H r-covers G, denoted by G
r← H , iff

for each slice S ∈ G there exist a slice T ∈ H and a relaxed homomorphism
θ : T r→ S.

Consider slices S = (NS , AS , x, y) and T = (NT , AT , w, z), as well as desig-
nated nodes u, v ∈ NS . The result of i-gluing T onto S via (u, v) is the slice de-
fined by iglue (u,v)(T, S) := (NS�NT , AS�AT ∪{uIxT , vIyT }, xS , yS). One i-glues
a graph H by i-gluing its slices: iglue (u,v)(H,S) := {iglue (u,v)(T, S) : T ∈ H}.
Given a slice S′ = (N ′, A′, x′, y′) and a i-draft homomorphism θ : S′ i→ S, we
set iglue θ(H,S) := iglue (θx′,θy′)(H,S).

A set of graph inclusions Γ is basic iff every inclusion G � H ∈ Γ is such that
G and H are basic. Let us consider, wlog, that G, H , and Γ are basic and that
each inclusion in Γ has a single-slice graph at the left-hand side.

Given slice S, define

– H(S) := {(θ, T ) : T ∈ H and θ : T r→ S} and

– Γ (S) := {(θ,G′ ∪ {S′} � H ′) : G′ ∪ {S′} � H ′ ∈ Γ and θ : S′ d→ S}.
We say that a slice S is red iff H(S) �= ∅. We say that a slice S is yellow iff
H(S) = ∅ and Γ (S) = ∅. We say that a slice S is green iff H(S) = ∅ and
Γ (S) �= ∅. We say that a graph G is red iff every slice in G is red.

Consider an enumeration S1 � H1, S2 � H2, . . . , Sn � Hn, . . . of graph inclu-
sions in Γ such that each graph inclusion appears infinitely many times in the
enumeration.

We shall build a tree whose nodes are labeled by graphs beginning with its root,
labeled by G, and expanding the tree considering the slices of each leaf, based on
the following idea: we will have no gain in expanding the tree from red slices, from
yellow slices it is impossible to expand the tree (since expansion is made based on
the hypotheses in Γ ), green slices are the ones used to expand the tree.

We say that a slice S′=(N ′, A′, x′, y′) is an extension of a slice S=(N,A, x, y)
iff N ⊆ N ′, A ⊆ A′, x = x′, and y = y′. Then every slice in glue θ(H,S)
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is an extension of S and, if θ : S′ d→ S, then θ can be considered as a draft
homomorphism from S′ to every extension of S. If G is a graph whose slices are
extensions of S and θ : S′ d→ S, define glue θ(H,G) := {glue θ(H,S′′) : S′′ ∈ G}.
Define also glue θ1···θn(H,G) := glue θ1(H, glue θ2···θn(H,S)).

Define T0 to be the tree whose only node is G0 = G. Given Tk, define Tk+1

as follows. For each leaf G′ of Tk, for each S ∈ G′, if S is green, then add
glue θ1···θn(Hk+1, S) as a son of G′ and label its arc with S, where {θ1, . . . , θn}
is the set of all draft homomorphisms from Sk+1 to S. If there is no draft homo-
morphism from Sk+1 to S, add S itself as a son of G′. When a leaf in Tk does
not have green slices, it gains no sons and remains a leaf in Tk+1. Define tree
T =

⋃
i∈N
Ti.

Given a node G in T , we say that G is red∗ iff G is red or for all S ∈ G, slice
S is red or G has a son G′ labeled S such that G′ is red∗. If G0 is red∗, then one
can obtain a derivation of G � H from Γ , as follows. We start with a sequence of
graphs (G′1, . . . , G

′
n), obtained as follows. Graph G′1 is G0 and G′k+1 is the result

of a series of applications of HypΓ on G′k, one for each draft homomorphism from
Sk+1 to each S ∈ G′k.

It is immediate to transform (G′1, . . . , G
′
n) into a derivation of G � H from Γ .

Include H after G′n, since H can be obtained from G′n by an application of GrCvr
(because every slice in G′n is red). If G, H , or Γ are not basic, include steps of
applications of the rules in Table 1 eliminating operators, except I, and introducing
operators, to obtain H from the result of application rule of GrCvr on graph G′n.
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If G0 is not red∗, then one can construct a modelM of Γ that is not a model
of G � H . If tree T has a graph with a yellow slice S = (N,A, x, y), then define
M = (M, rMi )i∈N with M = Ñ and rMi = {(ũ, ṽ) : uRv ∈ A}, where ∼ is ∼∗S .
Otherwise, there is an infinite path of graphs having green slices in tree T . From
this path we can obtain a chain (Sn)n∈ω of green slices. In this case, takeM to
be the canonical model on (Sn)n∈ω.

In any case (tree T having a yellow slice or a chain of green slices), the
constructed model M is such that M |= Γ and M �|= G � H . In fact, M |= Γ
since in the construction of T all possible applications of iHypΓ , related to each
inclusion of Γ , are effectively applied on every slice in chain (Sn)n∈ω. Also,
(x̃S0 , ỹS0) ∈ [[S0]]M ⊆ [[G]]M but there is no slice T ∈ H such that (x̃S0 , ỹS0) ∈
[[T ]]M. Otherwise, witness assignment g would be a relaxed homomorphism from
T to S0 and S0 would be red. ��

Proof of Theorem 2. (a)⇒(b) Suppose, for a contradiction, that &j∈J Pj ≤
Qj ⇒ P ≤ Q is valid in all linear lattices but {RPj � SQj : j ∈ J} ∪ LLat �
RP � SQ in +RG. Then, by the strong completeness of the graph calculus
{RPj � SQj : j ∈ J} ∪ LLat �|= RP � SQ. So, there is a model M such that
M |= {RPj � SQj : j ∈ J}, M |= LLat, but M �|= RP � SQ. Now, take
L = ({rMi : i ∈ I},∩, | ,⊆) and v : Lvar → {rMi : i ∈ I} such that vpi := rMi .
We have that L is a lattice of commuting equivalence relations and that [[P ]]vL =
[[RP ]]M for every lattice term P . So, for L and v we have [[Pj ]]vL ⊆ [[Qj]]vL, for
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every j ∈ J , but [[P ]]vL �⊆ [[Q]]vL, a contradiction with P ≤ Q is a consequence of
{Pj ≤ Qj : j ∈ J} in the class of all linear lattices.

(b)⇒(a) Suppose, for a contradiction, that {RPj � SQj : j ∈ J} ∪ LLat 
RP � SQ in +RG but &j∈J Pj ⊆ Qj ⇒ P ⊆ Q is not valid in the class
of all linear lattices. So, there is a linear lattice L = (L,∧L,∨L,≤L) and an
assignment v : Lvar → L such that [[Pj ]]vL ≤L [[Qj ]]vL, for every j ∈ J , but
[[P ]]vL �≤L [[Q]]vL. Now, since L is a linear lattice, there are sets M and E, where
E is a set of equivalence relations on M , M =

⋃
X∈E FldX , being FldX the field

of the relation X , and a function f : L → E such that E = (E,⊆,∩, | ) is
a lattice of commuting equivalence relations and f is an isomorphism from L
onto E . Taking E and observing that fv is an assignment for Lvar in E , since
f is an isomorphism, we have also that [[Pj ]]

fv
E ⊆ [[Qj ]]

fv
E , for every j ∈ J , but

[[P ]]fvE �⊆ [[Q]]fvE . Now, take M = (M, {rMj : j ∈ J}), where rMj := f(v(pj)), for
every j ∈ J . We have that M is a model, M |= LLat, and that [[RP ]]M = [[P ]]fvE
for every lattice term P . So, forM we have [[RPj ]]M ⊆ [[RQj ]]M, for every j ∈ J ,
but [[RP ]]M �⊆ [[RQ]]M, a contradiction with the strong soundness theorem for
+RG. ��
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